Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T14:07:00.422Z Has data issue: false hasContentIssue false

Quantitative X-Ray Structure Determination of Superlattices and Interfaces

Published online by Cambridge University Press:  15 February 2011

Ivan K. Schuller
Affiliation:
Physics Department 0319, University of California - San Diego, La Jolla, California 92093, USA
Eric E. Fullerton
Affiliation:
Physics Department 0319, University of California - San Diego, La Jolla, California 92093, USA
H. Vanderstraeten
Affiliation:
Laboratorium voor Vaste Stof-Fysika en Magnetisme, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium.
Y. Bruynseraede
Affiliation:
Laboratorium voor Vaste Stof-Fysika en Magnetisme, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium.
Get access

Abstract

We present a general procedure for quantitative structural refinement of superlattice structures. To analyze a wide range of superlattices, we have derived a general kinematical diffraction formula that includes random, continuous and discrete fluctuations from the average structure. By implementing a non-linear fitting algorithm to fit the entire x-ray diffraction profile, refined parameters that describe the average superlattice structure, and deviations from this average are obtained. The structural refinement procedure is applied to a crystalline/crystalline Mo/Ni superlattices and crystalline/amorphous Pb/Ge superlattices. Roughness introduced artificially during growth in Mo/Ni superlattices is shown to be accurately reproduced by the refinement.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 For recent reviews, see various articles in for instance Physics. Fabrication and Applications of Multilayered Structures, edited by Dhez, P. and Weisbuch, C. (Plenum Press, New York, 1988); Metallic Superlattices, edited by T. Shinjo and T. Takada (Elsevier, Amsterdam, 1987); I.K. Schuller, J. Guimpel, and Y. Bruynseraede, MRS Bulletin, Volume XV(2), 29 (1990). Synthetic Modulated Structures, edited by L.L. Chang and B. C. Giessen (Academic Press, New York, 1985).CrossRefGoogle Scholar
2 Rietveld, H.M., J. Appl. Cryst. 2, 65 (1969).Google Scholar
3 Izumi, F., in Advances in the Rietveld Method, edited by Young, R.A. (Oxford Univ. Press, in press).Google Scholar
4 Fullerton, E.E., Schuller, I.K., Vanderstraeten, H, and Bruynseraede, Y., Phys. Rev. B (submitted for publication)Google Scholar
5 Sevenhans, W., Gijs, M., Bruynseraede, Y., Homma, H., and Schuller, I.K., Phys. Rev. B 34, 5955 (1986).Google Scholar
6 Hendricks, S. and Teller, E., J. Chem. Phys., 10, 147 (1942).Google Scholar
7 Locquet, J.-P., Neerinck, D., Stockman, L., Bruynseraede, Y., and Schuller, I.K., Phys. Rev. B39, 3572 (1988).Google Scholar
8 Locquet, J.-p., Neerinck, D., Stockman, L., Bruynseraede, Y., and Schuller, I.K., Phys. Rev. B39, 13338 (1989).Google Scholar
9 Schuller, I.K., Phys. Rev. Lett. 44, 1597 (1980).Google Scholar
10 Clemens, B.M. and Gay, J.G., Phys. Rev. B 35, 9337 (1987).CrossRefGoogle Scholar
11 Neerinck, D., Vanderstraeten, H., Stockman, L., Locquet, J.-P., Bruynseraede, Y., and Schuller, I.K., J. Phys.: Condens. Matter 2, 4111 (1990).Google Scholar
12 Bevington, P.R., Data Reduction and Error Analysis for the Physical Sciences, (McGraw-Hill, New York, 1969).Google Scholar
13 Khan, M.R., Chun, C.S.L., Felcher, G.P., Grimsditch, M., Kueny, A., Falco, C.M., and Schuller, I.K., Phys. Rev. B21, 7186 (1983).Google Scholar
14 Schuller, I.K. and Grimsditch, M., J. Vac. Sci. Technol. B4, 1444 (1986).Google Scholar
15 Underwood, J.H. and Barbee, T.W., Appl. Opt. 20, 3027 (1981).CrossRefGoogle Scholar
16 Neerinck, D., Temst, K., Vanderstraeten, H., Van Haesendonck, C., Bruynseraede, Y., Gilabert, A. and Schuller, I.K., Mat. Res. Soc. Symp. Proc. 160, 599 (1990).Google Scholar
17 Vanderstraeten, H., Neerinck, D., Temst, K., Bruynseraede, Y., Fullerton, E.E., and Schuller, I.K., J. Appl. Cryst. (accepted for publication).Google Scholar