Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T01:44:49.418Z Has data issue: false hasContentIssue false

Quantitative and Nanoscale Surface Potential Tracking of Ionic and Organic Adsorbates at sub-Monolayer Coverage

Published online by Cambridge University Press:  01 February 2011

L. M. Eng*
Affiliation:
Institute of Applied Photophysics, University of Technology Dresden, Germany
Ch. Loppacher
Affiliation:
Institute of Applied Photophysics, University of Technology Dresden, Germany
U. Zerweck
Affiliation:
Institute of Applied Photophysics, University of Technology Dresden, Germany
*
# corresponding address: eng@iapp.de
Get access

Abstract

We use an improved setup for deducing quantitative surface potential values by means of frequency modulated Kelvin-probe force microscopy (FM-KPFM). This method is sensitive to the electrostatic force gradient rather than the absolute force probed in KPFM so far, and therefore provides both a higher lateral resolution and quantitative values. Furthermore, FM-KPFM allows using cantilevers with high spring constants which even favors both the stability and increased topographic resolution. Here, we apply FM-KPFM to deduce interfacial electrical properties of the sub-monolayer coverage of three adsorbates on metal substrates: lithium chloride films, Copper-porphyrines, and C60 molecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nonnenmacher, M., O'Boyle, M. P., and Wickramasinghe, H. K., Appl. Phys. Lett. 58, 2921 (1991).Google Scholar
2. Weaver, J. and Abraham, D., J. Vac. Sci. Technol. B 9, 1559 (1991).Google Scholar
3. Thomson (Lord Kelvin), W., Phil. Mag. 46, 82 (1898).Google Scholar
4. , J., Delamarche, E., Eng, L. M., Bennewitz, R., Meyer, E., and Güntherodt, H.-J., Langmuir 15, 8184 (1999).Google Scholar
5. Jacobs, H. O., Knapp, H. F., Müller, S., and Stemmer, A., Ultramicroscopy 69, 39 (1997).Google Scholar
6. Zerweck, U., Loppacher, C., Otto, T., Grafström, S., and Eng, L. M., Phys. Rev. B, (2005) in press.Google Scholar
7. Kitamura, S. and Iwatsuki, M., Appl. Phys. Lett. 72, 3154 (1998).Google Scholar
8. Kikukawa, A., Hosaka, S., and Imura, R., Appl. Phys. Lett. 66, 3510 (1995).Google Scholar
9. Omicron NanoTechnology GmbH, Taunusstein, GermanyGoogle Scholar
10. Loppacher, C., Bammerlin, M., Battiston, F. M., Guggisberg, M., Müller, D., Hidber, H. R., Lüthi, R., Meyer, E., and Güntherodt, H.-J., Appl. Phys. A 66, S215 (1998).Google Scholar
11. Loppacher, Ch., Zerweck, U., and Eng, L. M., Nanotechnology 15, S9 (2004).Google Scholar
12. Wang, Lin-Lin and Cheng, Hai-Ping, Phys. Rev B 69, 165417 (2004).Google Scholar
13. Hayashi, N., Ishii, H., Ouchi, Y., and Seki, K., J. Appl. Phys. 92, 3784 (2002).Google Scholar
14. Hill, I. G., Rajagopal, A., and Kahn, A., Appl. Phys. Lett. 73, 662 (1998).Google Scholar
15. Gimzewski, J. K., Jung, T. A., Cuberes, M. T., and Schlittler, R. R., Surf. Sci. 386, 191 (1997).Google Scholar
16. Yokoyama, T., Yokoyama, S., Kamikado, T., Okuno, Y., and Mashiko, S., Nature 413, 619 (2001).Google Scholar
17. Jung, T., Schlittler, R.R., and Gimzewski, J.K., Nature 386, 696 (1997).Google Scholar