Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T14:13:12.043Z Has data issue: false hasContentIssue false

Pyroelectric Coefficient Optimization Through Grain Size Control in (Ba, Sr)TiO3 Thin Films

Published online by Cambridge University Press:  10 February 2011

Lawrence F. Schloss
Affiliation:
Department of Materials Science and Engineering, UC Berkeley and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Eugene E. Haller
Affiliation:
Department of Materials Science and Engineering, UC Berkeley and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Get access

Abstract

Thin Ba0.2Sr0.8TiO3 films were pulsed laser deposited at laser pulse repetition rates of 1, 5 and 20 Hz in order to assess the effect of grain size on pyroelectric properties. Scanning electron microscopy reveals an increase in columnar grain size with decreasing laser pulse rate, as expected. Substrate bending measurements show an increase in tensile stress with increasing grain size, suggesting some form of stress relaxation has occurred. X-ray diffraction studies reveal all films to be epitaxial and oriented, while Rutherford Backscattering Spectroscopy finds no significant differences in film composition. The films grown at 5 and 20 Hz display a suppressed dielectric permittivity as a function of temperature, while the film deposited at 1 Hz displays an unusually sharp and large dielectric permittivity peak. A variation on current theory concerning phase transitions of stressed ferroelectric thin films is proposed to explain these results.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Cherry, Hilary Baumann, MS Thesis, UC Berkeley, 1993.Google Scholar
2 Basceri, C., Streiffer, S. K., Kingon, A. I., Waser, R., J. Appl. Phys. 82, 24972504 (1997).Google Scholar
3 Zhou, C. and Newns, D. M., J. Appl. Phys. 82, 30813088 (1997).Google Scholar
4 Shaw, T. M., Suo, Z., Huang, M., Liniger, E., Laibowitz, R. B., Baniecki, J. D., Appl. Phys. Lett. 75, 21292131 (1999).Google Scholar
5 Pertsev, N. A., Zembilgotov, A. G., Tagantsev, A. K., Phys. Rev. Lett. 80, 19881991 (1998).Google Scholar
6 Pertsev, N. A., Zembilgotov, A. G., Hoffman, S., Waser, R., Tagantsev, A. K., J. Appl. Phys. 85, 16981701 (1999).Google Scholar
7 Kwak, B. S., Erbil, A., Budai, J. D., Chisholm, M. F., Boatner, L. A., Wilkens, B. J., Phys. Rev. B 49, 1486514879 (1994).Google Scholar
8 Kay, H. F. and Vousden, P., Phil. Mag. 40, 1019 (1949).Google Scholar
9 Merz, W. P., Phys. Rev. 75, 687 (1949).Google Scholar
10 Arlt, G., Hennings, D., With, G. de, J. Appl. Phys. 58, 16191625 (1985).Google Scholar
11 Hoffman, B., Thin Solid Films 34, 185190 (1976).Google Scholar
12 Nix, W. D. and Clemens, B. M., J. Mater. Res. 14, 34673473 (1999).Google Scholar
13 Chang, C. C., Wu, X. D., Ramesh, R., Xi, X. X., Ravi, T. S., Venkatesan, T., Hwang, D. M., Muenchausen, R. E., Foltyn, S., Nogar, N. S., Appl. Phys. Lett. 57, 18141816 (1990).Google Scholar