Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T23:52:26.147Z Has data issue: false hasContentIssue false

The Pyrochlore Line in the System CaO—ZrO2—TiO2: Implications on Synroc Phase Assemblages

Published online by Cambridge University Press:  25 February 2011

M. Ondina Figueiredo
Affiliation:
Centro de Cristalografia e Mineralogia, IICT, Al. Afonso Henriques, 41–4ºE, 1000 Lisboa, Portugal Dept. Engenharia de Minas, Instituto Superior Técnico, UTL, Av. Rovisco Pais, 1000 Lisboa, Portugal
António Correia dos Santos
Affiliation:
Dept. Quimica, Fac. Ciências, Univ. Lisboa, Rua Ernesto de Vasconcelos, edificio Cl, 1700 Lisboa, Portugal
Carmen Parada Cortina
Affiliation:
Dept. Quimica Inorganica, Fac. Quimicas, Univ. Complutense de Madrid, 28006 Madrid, España
M. Joao Basto
Affiliation:
Dept. Engenharia de Minas, Instituto Superior Técnico, UTL, Av. Rovisco Pais, 1000 Lisboa, Portugal
Get access

Abstract

Results of further studies on phase equilibria in system CaO—ZrO2—TiO2 along the “pyrochlore” line ( Ca Zrx Ti3-x 07 ) are reported concerning the possible substitution of cerium for either calcium or zirconium in nominal “Ca Zr2 Ti 07”. The dominant tetragonal phase in this composition was identified as calzirtite. The structural role of zirconium and its tendency towards 7—coordination environments are discussed. Possible implications on high—level nuclear waste immobilizers like SYNROC are brieflyconsidered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ringwood, A.E., Miner. Mag. 49, 159 (1985).Google Scholar
2. Réau, J.M., Portier, J., Levasseur, A., Villeneuve, G. and Pouchard, M., Mater. Res. Bull. 13, 1415 (1978).Google Scholar
3. Rincon, J., Moya, J.S. and Melo, M.F., Brit. Ceram. Trans. 85, 201 (1986).Google Scholar
4. Bayliss, P., Mazzi, F., Munno, R. and White, T.J., Miner. Mag. 53, 565 (1989).Google Scholar
5. Pyatenko, Yu.A. and Pudovkina, Z.V., Sov. Phys. Cryst. 6, 155 (1961).Google Scholar
6. Konev, A.A., Ushchapovskaya, Z.F., Kashayev, A.A. and Lebedeva, V.S., Doklady Akad. Nauk SSSR 186, 143 (1969)Google Scholar
7. Figueiredo, M.O. and Santos, A. Correia dos in Advances in Zirconia Science and Technology “ZIRCONIA 88”, edited by Meriani, S. and Palmonari, C. (Elsevier Science Publishers, New York, 1989) pp. 8187.CrossRefGoogle Scholar
8. Ewing, R.C., Haaker, R.F. and Lutze, W. in Scientific Basis for Nuclear Waste Management II, edited by Lutze, W. (Elsevier Science Publishers, New York, 1982) p. 389.Google Scholar
9. Lima-de-Faria, J. and Figueiredo, M.O., J. Solid State Chem. 16, 720 (1976).CrossRefGoogle Scholar
10. Rossell, H.J., Acta Cryst. B38, 593595 (1982).CrossRefGoogle Scholar
11. Gatehouse, B.M., Gray, I.E., Hill, R.J. and Rossell, H.J., Acta Cryst. B37, 306 (1981).CrossRefGoogle Scholar