Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T14:08:22.749Z Has data issue: false hasContentIssue false

Pulsed Laser Deposition of ZnO: Energetic Rydberg State Atoms and Their Impact on Film Growth

Published online by Cambridge University Press:  15 February 2011

Robert E. Leuchtner*
Affiliation:
Physics Department, University of New Hampshire, Durham, NH
Get access

Abstract

A detailed comparison of the ZnO film microstructure prepared with both targets at two deposition pressures (0.01 and 0.1 torr) and a variety of substrate temperatures from 50-500°C was performed. The crystallographic and morphological results suggest that the condensation of highly electronically excited state particles, both ions and long-lived excited state neutrals likely affects film growth, and can enhance desirable surface processes, such as athermal recrystallizalion and surface mobility, that favor oriented crystal growth at lower substrate temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Hu, J. and Gordon, R.G., J. Appl. Phys. 71, 880 (1992).Google Scholar
2 Oda, S. et al. , Jpn. J. Appl. Phys. 24, 1607 (1985).Google Scholar
3 Pulsed Laser Deposition of Thin Films. Hubler, G., Chrisey, D., eds., Wiley, NY, 1994.Google Scholar
4 Cheung, J. and Sankur, H., CRC Crit. Rev. Solid State Mater. Sci. 15, 63 (1988).Google Scholar
5 Laser Ablation: Mechanisms and Applications. Miller, J.C., Haglund, R.F., eds., Springer-Verlag, New York, vol. 389 (1991).Google Scholar
6 Singh, R.K. and Narayan, J., Phys. Rev. B 41, 8843 (1990).Google Scholar
7 Helvajian, H. and Welle, R.P., Mat. Res. Soc. Symp. Proc. 129, 359 (1989).Google Scholar
8 Lichtenwaller, D., Auciello, O., et al. , J. Appl. Phys. 74, 7497 (1993).Google Scholar
9 Foltyn, S.R., Muenchausen, R.E., Dye, R.C., et al. , Appl. Phys. Lett., 59, 1374 (1991).Google Scholar
10 Chap VIII, in Thermodynamics and Kinetics Relevant to Materials Sc.ip.nrr.. Machlin, E.S., GIRO Press, Crouton-on-Hudson, NY, 1991.Google Scholar
11 Okada, T., Shibamaru, N., Nakayama, Y., et al. , Appl. Phys. Lett. 60, 941 (1992).Google Scholar
12 Leuchtner, R.E., et al. Mat. Res. Soc. Symp. Proc., 243, 525 (1992).Google Scholar
13 see, e.g., a) Gallagher, T.F., “Rydberg Atoms”, Rep. Prog. Phys. 51, 143 (1988); b)T.Oomori, et al., Appl. Phys. Lett. 50, 71 (1987).Google Scholar
14 Movchan, B.A. and Demchishin, A.V., Fiz. Met. Metalloved. 28, 653 (1969).Google Scholar
15 Grovenor, C., Hentzell, H., and Smith, D., Acta. Metall. 32, 773 (1984).Google Scholar
16 Leuchtner, R.E., Mat. Res. Soc. Symp. Proc, 354, 431 (1995).Google Scholar
17 Saenger, K.L., J. Appl. Phys. 66, 4435 (1989).Google Scholar
18 The lifetime of bound states near the ionization continuum is proportional to n3,where n is the effective principal quantum number. See ref. 13b.Google Scholar
Park, et al. , Appl. Phys. Lett. 58, 2565 (1991).Google Scholar
20 Castleman, A.W., Leuchtner, R.E., et al. , J. Chem. Phys. 86, 3829 (1987).Google Scholar
21 McDaniel, E.W., in Collision Phenomena in Ionized Gases. Wiley Inc., NY (1964).Google Scholar
22 see Physics of Shock Waves and High-Temperature Hydrodynamic Phenomemon. Zel'dovich, Y.B. and Raizer, Y.P., Academic Press, New York, pp. 349352, 1966.Google Scholar
23 Intro to Physical Gas Dynamics. Vincenti, W. and Kruger, C.H. Jr., Wiley, NY, 1965.Google Scholar
23 Mueller, K., J. Appl. Phys. 58, 2573 (1985).Google Scholar