Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T07:44:00.816Z Has data issue: false hasContentIssue false

Pulsed Electron Beam Deposition of Nanocrystalline Diamond

Published online by Cambridge University Press:  10 April 2013

Redhouane Henda
Affiliation:
School of Engineering, Laurentian University, Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada.
Omar Alshekhli
Affiliation:
School of Engineering, Laurentian University, Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada.
Get access

Abstract

Pulsed electron beam ablation (15 keV, 1 kA, 100 ns) has been used to grow thin films of nanocrystalline diamond on silicon substrates. The films have been grown at room temperature and 150°C, and under argon as the working background gas at a pressure of about 4 mTorr. Visible reflectance spectroscopic analysis has shown films thickness to range between about 55 nm and 115 nm. Visible-Raman spectroscopic measurements have confirmed the presence of sp3 carbon bonds with a substantial fraction in the deposited films, and surrounded by a graphitic phase. The morphological features of the films have been assessed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The films surface is relatively smooth at room temperature and for low thickness, and becomes rougher at high temperature and for thicker films.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bundy, F.P., Hall, H.T., Strong, H.M., Wentorf, R.H. Jr., Nature 176, 55 (1955).CrossRefGoogle Scholar
Davies, R.D., Diamond, (Adam Hilger, Bristol, UK, 1984).Google Scholar
Spear, K.E. and Dismukes, J.P., Synthetic Diamond: Emerging CVD Science and Technology, (John Wiley & Sons Inc., New York, 1993).Google Scholar
Gruen, D.M., in Properties, Growth, and Applications of Diamond, edited by Nazare, M.H. and Neves, A.J. (The Institution of Electrical Engineers, London, UK, 2001), p. 313.Google Scholar
Zhang, J., Su, D.S., Blume, R., Schlogl, R., Wang, R., Yang, X., Gajovic, A., Angew. Chem. Int. Ed. 49, 8640 (2010).CrossRefGoogle Scholar
Mounier, E. E., Bertin, F., Adamik, M., Pauleau, Y., Barna, P.B., Diamond Relat. Mater. 5, 1509 (1996).CrossRefGoogle Scholar
Hofsass, H., Binder, H., Klunmpp, T., Recknagel, E., Diamond Relat. Mater. 3, 137 (1994).CrossRefGoogle Scholar
Hara, T., Yoshitake, T., Fukugawa, T., Zhu, L.Y., Itakura, M., Kuwano, N., Tomokiyo, Y., Nagayama, K., Diamond Relat. Mater. 13, 679 (2004).CrossRefGoogle Scholar
Harshavardhan, K.S. and Strikovski, M., in Second-Generation HTS Conductors, edited by Goyal, A. (Springer, New York, 2005), p. 109.CrossRefGoogle Scholar
Strikovski, M. and Harshavardhan, K.S., Appl. Phys. Lett. 82, 853 (2003).CrossRefGoogle Scholar
Jiang, Q.D., Matacotta, F.C., Konijnenberg, M.C., Muller, G., Schultheiss, C., Thin Solid Films 241, 100 (1994).CrossRefGoogle Scholar
Ferrari, A.C. and Robertson, J., J. The Royal Soc. 362, 2477 (2004).Google Scholar
Prawer, S., Nugent, K.W., Jamieson, D.N., Orwa, J.O., Bursill, L.A., Peng, J.L, J. Chem. Phys. Lett. 332, 93 (2000).CrossRefGoogle Scholar
Gruen, D.M., J. Annual Rev. Mater. Sci. 29, 211 (1999).CrossRefGoogle Scholar
Ferrari, A.C. and Robertson, J., J. Physical Rev. B 63, 121405 (2001).CrossRefGoogle Scholar
Yadav, V.S., Sahu, D.K., Singh, M., Kumar, K., World Congress on Engr. Comp. Sci. 1, 1 (2009).Google Scholar