Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T13:30:37.473Z Has data issue: false hasContentIssue false

The Prs2O3 /Si(001) Interface: a Mixed Si-Pr Oxide

Published online by Cambridge University Press:  01 February 2011

Dieter Schmeißer
Affiliation:
Angewandte Physik-Sensorik, BTU Cottbus, Postfach 10 13 44, D-03013 Cottbus, Germany
Jarek Dabrowski
Affiliation:
IHP, Im Technologiepark 25, D-15236 Frankfurt (Oder), Germany
Hans-Joachim Müssig
Affiliation:
IHP, Im Technologiepark 25, D-15236 Frankfurt (Oder), Germany
Get access

Abstract

We studied the Pr2O3/Si(001) interface by a non-destructive depth profiling using synchrotron radiation and photo-electron spectroscopy (SR-PES) at the undulator beam line U49/2-PGM2 and ab initio calculations. Our results provide evidence that a chemical reactive interface exists consisting of a mixed Si-Pr oxide such as (Pr2O3)(SiO)x(SiO2)y. There is no formation of neither an interfacial SiO2 nor interfacial silicide: all Si-Pr bonds are oxidized and all SiO4 units dissolve in the Pr oxide. Under ultrahigh vacuum conditions, silicide formation is observed only when the film is heated above 800°C in vacuum. Interfacial silicates like (Pr2O3)(SiO)x(SiO2)y are promising high-k dielectric materials, e.g., because they represent incremental modification of SiO2 films by Pr ions, so that the interface characteristics can be similar to Si-SiO2 interface properties. The Pr silicate system formed in a natural way at the interface between Si(001) and Pr2O3 offers an increased flexibility towards integration of Pr2O3 into future CMOS technologies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature

[1] Osten, H. J. et al., IEDM Technical Digest (2000) 653.Google Scholar
[2] Müssig, H.-J., Osten, H.J., Bugiel, E., Dabrowski, J., Fissel, A., Guminskaya, T., Ignatovich, K., Liu, J. P., Zaumseil, P., and Zavodinsky, V., 2001 IEEE/IIRW - Final Report (USA), 1.Google Scholar
[3] Müssig, H.-J., Dabrowski, J., Ignatovich, K., Liu, J. P., Zavodinsky, V., Osten, H. J., Surf. Sci. 504C (2002) 159.Google Scholar
[4] Batchelor, D. R., Follath, R., Schmeißer, D., Nuclear Instruments andMethods in Physics Re-search A 467-468 (2001) 470.Google Scholar
[5] Yeh, J. J. and Lindau, I., Subshell Photo-Ionization Cross Sections, Atomic Data and Nuclear Data Tables, 32 (1985).Google Scholar
[6] Fissel, A., Dabrowski, J., and Osten, H. J., J. Appl. Phys. 91 (2002) 8968.Google Scholar
[7] Schmeiß, D.er, Materials Science in Semiconductor Processing (2003), in print.Google Scholar