Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T23:30:01.006Z Has data issue: false hasContentIssue false

Properties and Effects of Hydrogen in GaN

Published online by Cambridge University Press:  03 September 2012

S.J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611, USA
H. Cho
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611, USA
F. Ren
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville FL 32611, USA
J.-I. Chyi
Affiliation:
Department of Electrical Engineering, National Central University, Chung-Li 32054, Taiwan
J. Han
Affiliation:
Sandia National Laboratories, Albuquerque NM 87185, USA
R.G. Wilson
Affiliation:
Consultant, Stevenson Ranch, CA 91381, USA
Get access

Abstract

The status of understanding of the behavior of hydrogen in GaN and related materials is reviewed. In particular, we discuss the amount of residual hydrogen in MOCVD-grown device structures such as heterojunction bipolar transistors, thyristors and p-i-n diodes intended for high power, high temperature applications. In these structures, the residual hydrogen originating from the growth precursors decorates Mgdoped layers and AlGaN/GaN interfaces. There is a significant difference in the diffusion characteristics and thermal stability of implanted hydrogen between n- and p-GaN, due to the stronger affinity of hydrogen to pair with acceptor dopants and possibly to the difference in H2 formation probability.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. see for example, Pearton, S.J., Zolper, J.C., Shul, R.J. and Ren, F., “GaN: Defects, Processing and Devices”, J. Appl. Phys. 78 R1 (1999).Google Scholar
2. Walle, C.G. Van de, “Theory of Hydrogen is Semiconductors”, Mat. Res. Soc. Symp. Proc. 513 55 (1998).Google Scholar
3. Myers, S.M., Headly, T.J., Hills, C.R., Petersen, J. Han. G.A., Seager, C.H., Wampler, W.R., “The behavior of Ion-Implanted Hydrogen in GaN”, MRS Internet J. Nitride Semicond. Res. 4S1 G5.8 (1999).Google Scholar
4. Wampler, W.R. and Myers, S.M., “Ion Channeling Analysis of GaN Implanted with Deuterium”, MRS Internet J. Nitride Semicond. Res. 4S1 G3.73 (1999).Google Scholar
5. Weinstein, M.G., Song, C.Y., Stavola, M., Pearton, S.J., Wilson, R.G., Shul, R.J., Killeen, K.P. and Ludowise, M.J., “H Decorated Lattice Defects in Proton-Implanted GaN”, Appl. Phys. Lett. 72 1703 (1998).Google Scholar
6. Weinstein, M.G., Stavola, M., Song, C.Y., Bozdog, C., Przbylinska, H., Watkins, G.D., Pearton, S.J. and Wilson, R.G., “Spectroscopy of Proton-Implanted GaN”, MRS Internet J. Nitride Semicond. Res. 4S1 G5.9 (1999).Google Scholar
7. Zavada, J.M., Wilson, R.G., Abernathy, C.R. and Pearton, S.J., “Hydrogenation of GaN, AlN and InN”, Appl. Phys. Lett. 64 2724 (1994).Google Scholar
8. Wilson, R.G., Pearton, S.J., Abernathy, C.R. and Zavada, J.M., “Outdiffusion of deuterium from GaN, AlN and InN”, J. Vac. Sci. Technol. A 13 719 (1995).Google Scholar
9. Miyachi, M., Tanaka, T., Kimura, Y. and Ota, H., “The Activation of Mg in GaN by Annealing with Minority Carrier Injection”, Appl. Phys. Lett. 72 1101 (1998).Google Scholar
10. Torres, V.J.B., Oberg, S. and Jones, R., “Theoretical Studies of Hydrogen Passivated Substitutional Mg Acceptor in Wurzite GaN”, MRS Internet J. Nitride Semicond. Res. 2 35 (1997).Google Scholar
11. Pearton, S.J., Abernathy, C.R., Vartuli, C.B., Lee, J.W., MacKenzie, J.D., Wilson, R.G., Shul, R.J., Ren, F. and Zavada, J.M., “Unintentional Hydrogenation of GaN and Related Alloys During Processing”, J. Vac. Sci. Technol. A 14 831 (1996).Google Scholar
12. Ohba, Y. and Hatano, A., “Mg Doping and H Incorporation in GaN MOCVD”, Jpn. J. Appl. Phys. 33 L1367 (1994).Google Scholar
13. Lee, J.W., Pearton, S.J., Zolper, J.C. and Stall, R.A., “Hydrogen Passivation of Ca Acceptors in GaN”, Appl. Phys. Lett. 68 2102 (1996).Google Scholar
14. Neugebauer, J. and Walle, C.G. Van de, “Role of H in Doping of GaN”, Appl. Phys. Lett. 68 1829 (1996).Google Scholar
15. Myers, S.M., Han, J., Headly, T.J., Hills, C.R., Petersen, G.A., Seager, C.H., Wampler, W.R. and Wright, A.F., “Behavior of Ion-Implanted Hydrogen in GaN at Concentrations ≥ 1 at.%”, Phys. Rev. B (in press).Google Scholar
16. Harima, H., Inoue, T., Nakashima, S., Ishida, M. and Taneya, M., “Local Vibrational Modes as a Probe of Activation Process in p-type GaN”, Appl. Phys. Lett. 75 1383 (1999).Google Scholar
17. Sugiura, L., Suzuki, M. and Nishino, J., “P-type Conduction in As-Grown Mg-Doped GaN Grown by MOCVD”, Appl. Phys. Lett. 72 1748 (1998).Google Scholar
18. Amano, H., Kito, M., Hiramatsu, K. and Akasaki, I., Jap. J. Appl. Phys. 28 L112 (1989).Google Scholar
19. Walle, C.G. Van de, “Interaction of Hydrogen with Native Defects in GaN”, Phys. Rev. B 56 R10020 (1997).Google Scholar
20. Estreicher, S.K. and Maric, D.M., “Theoretical Study of H in Cubic GaN”, Mat. Res. Soc. Symp. Proc. 423 613 (1996).Google Scholar
21. Nakamura, S., Iwasa, N., Senoh, M. and Mukai, T., “Hole Compensation Mechanism of p-GaN Films”, Jpn. J. Appl. Phys. 31 1258 (1992).Google Scholar
22. Nakamura, S., Mukai, T., Senoh, M. and Iwasa, N., “Thermal Annealing Effects on ptype, Mg-Doped GaN Films”, Jpn. J. Appl. Phys. 31 L139 (1992).Google Scholar
23. Gatz, W., Johnson, N.H., Bour, D.P., McCluskey, M.D. and Haller, E.E., “Local Vibrational Modes of the Mg-H Acceptor Complex in GaN”, Appl. Phys. Lett. 69 3725 (1996).Google Scholar
24. Bosin, A., Fiorentini, V. and Vanderbilt, D., “H, Acceptors, and H-Acceptors Complexes in GaN”, Mat. Res. Soc. Symp. Proc. 395 503 (1996).Google Scholar
25. Okamoto, Y., Saito, M. and Oshiyama, A., “First Principles Calculations on Mg and Mg-H in GaN”, Jap. J. Appl. Phys. 35 L807 (1996).Google Scholar
26. Vechten, J.A. Van, Zook, J.D., Horning, R.D. and Goldenberg, B., “Detecting Compensation in Wide Bandgap Semiconductors by Growing in H That is Removed by Low Temperature De-Ionizing Radiation”, Jpn. J. Appl. Phys. 31 3662 (1992).Google Scholar
27. Pearton, S.J., Lee, J.W. and Yuan, C., “Minority Carrier Enhanced Passivation of HPassivated Mg in GaN”, Appl. Phys. Lett. 68 2690 (1996).Google Scholar
28. see for example Popovici, G. and Morhoe, H., “Growth and Doping of Defects in IIINitrides”, In GaN and Related Materials II, ed. Pearton, S.J. (Gordon, Breach, NY, 1999).Google Scholar
29. Amano, H., Akasaki, I., Kozawa, T., Sawaki, N., Ikeda, K. and Ishii, Y., “Doping of GaN with Zn”, J. Lumin. 4 121 (1988).Google Scholar
30. Pearton, S.J., Abernathy, C.R. and Ren, F., “Electrical Passivation in H-Plasma-Exposed GaN”, Electron. Lett. 30 527 (1994).Google Scholar
31. Burchaid, A., Deicher, M., Forkel-Wirth, D., Haller, E.E., Magerle, R., Prospero, A. and Stotzler, R., “First Microscopic Observation of Cd-H Pairs in GaN”, Mat. Res. Soc. Symp. Proc. 449 961 (1997).Google Scholar
32. Johnson, N.M., Gotz, W., Neugebauer, J. and Walle, C.G. Van de, “Hydrogen in GaN”, Mat. Res. Soc. Symp. Proc. 395 723 (1996).Google Scholar
33. Neumark, C.F., “Defects in Wide Bandgap II-VI Crystals”, Mat. Sci. Eng. R 21 1 (1997).Google Scholar
34. Pearton, S.J., Corbett, J.W. and Stavola, M., Hydrogen in Crystalline Semiconductors (Springer-Verlag, Berlin 1992).Google Scholar
35. Antell, G. R., Briggs, A.T.R., Butler, B.P., Kitching, S.A., Stagg, J.P., Chew, A. and Sykes, D.E., “Passivation of Zn Acceptors in InP by Atomic Hydrogen Coming from AsH3 during MOVPE”, Appl. Phys. Lett. 53 758 (1988).Google Scholar