Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T23:37:14.338Z Has data issue: false hasContentIssue false

Production of Sapphire Blanks and Substrates for Blue LEDs and LDs

Published online by Cambridge University Press:  11 February 2011

Chandra P. Khattak
Affiliation:
Crystal Systems Inc., 27 Congress Street Salem, MA 01970
Frederick Schmid
Affiliation:
Crystal Systems Inc., 27 Congress Street Salem, MA 01970
Paul J. Guggenheim
Affiliation:
Crystal Systems Inc., 27 Congress Street Salem, MA 01970
Maynard B. Smith
Affiliation:
Crystal Systems Inc., 27 Congress Street Salem, MA 01970
Henry H. Rogers
Affiliation:
Crystal Systems Inc., 27 Congress Street Salem, MA 01970
Kurt Schmid
Affiliation:
Crystal Systems Inc., 27 Congress Street Salem, MA 01970
Get access

Abstract

The Heat Exchanger Method (HEM) of crystal growing was combined with the Fixed Abrasive Slicing Technology (FAST) to produce low-cost, high-quality sapphire substrates for deposition of the GaN family of compounds. Production quantities of 2-inch diameter blanks have been supplied, and 3-inch diameter material has been qualified. Current technology can be used to prepare sapphire blanks up to 6-inch diameter.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M. and Mukai, T., Appl. Phys. Lett. 64, 1687 (1994).Google Scholar
2. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996).Google Scholar
3. Mohammad, S. N., Salvador, A. and Morkov, H., Proc. IEEE 83, 1306 (1995).Google Scholar
4. Slack, G. A. and McNelly, T. F., J. Crystal Growth 42, 560 (1977).Google Scholar
5. Tanaka, M., Nakahata, S., Sogabe, K., Nakata, H. and Tobioka, M., J. Appl. Phys. 36, L1062 (1997).Google Scholar
6. Hellmann, E. S., Lilientha-Weber, Z., Buchanan, D. N. E., MRS Internet J. Nitride Semicond. Res. 2, 30 (1997).Google Scholar
7. Kung, P., Saxler, A., Zhang, X., Walker, D., Lavado, R. and Razeghi, M., Appl. Phys. Lett. 69, 2116 (1996).Google Scholar
8. Vennegues, P., Beaumont, B. and Gibart, P., J. Appl. Phys 87, 4175 (2000).Google Scholar
9. Zheleva, T. S., Ashmawi, W. M., Jones, K. A., Phys. Stat. Sol. 176, 545 (1999).Google Scholar
10. Schmid, F. and Viechnicki, D., J. Am. Ceramic Soc. 53 (9), 528 (1970).Google Scholar
11. Khattak, C. P. and Schmid, F., Proc. SPIE 505, 4 (1984).Google Scholar
12. Khattak, C. P. and Schmid, F., J. Crystal Growth 225, 572 (2001).Google Scholar
13. Khattak, C. P. and Schmid, F., Proc. E.C. Photovoltaic Specialists Conf., D. Reidel Publ. Co., p. 106 (1979).Google Scholar
14. Schmid, F. and Khattak, C. P., Optical Spectra 15 (5) 65 (1981).Google Scholar