Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T13:57:43.515Z Has data issue: false hasContentIssue false

Processing of InP and GaAs Surfaces by Hydrogen and Oxygen Plasmas: In Situ Real Time Ellipsometric Monitoring

Published online by Cambridge University Press:  03 September 2012

M. Losurdo
Affiliation:
Centro di Studio per la Chimica dei Plasmi - CNR - Dipartimento di Chimica - Università di Bari -via Orabona, 4 - 70126 Bari, Italy.
P. Capezzuto
Affiliation:
Centro di Studio per la Chimica dei Plasmi - CNR - Dipartimento di Chimica - Università di Bari -via Orabona, 4 - 70126 Bari, Italy.
G. Bruno
Affiliation:
Centro di Studio per la Chimica dei Plasmi - CNR - Dipartimento di Chimica - Università di Bari -via Orabona, 4 - 70126 Bari, Italy.
Get access

Abstract

Remote radiofrequency H2 and O2 plasma processing of InP and GaAs surfaces was investigated by in situ real time spectroscopic ellipsometry. Hydrogen plasmas were used for the native oxide removal and the defect passivation of III-V surfaces. The effect of hydrogen exposure time and of crystallographic orientation (GaAs (100), (110), (111)) on the chemistry and kinetics of oxygen removal and of phosphorus/arsenic depletion was investigated. Oxygen plasma anodization was used to grow oxide films on GaAs (100), (110) and (111) substrates. The effect of bias voltage and UV-light irradiation on the chemistry and kinetics of oxidation process and on the oxide properties was studied. The composition and morphology of the InP and GaAs surfaces resulting from these plasma treatments was described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Losurdo, M., Bruno, G., Capezzuto, P., Vac., J. Sci. Technol. B, 14, p. 691 (1996).Google Scholar
2 Gottscho, R.A. Preppenau, B.L., Pearton, S.J., Emerson, A.B., J. Appl. Phys, 68 (2), p. 440 (1990).Google Scholar
3 Omeljanovsky, E.M., Pakhomov, A.V., Polyakov, A.Y., Semicond. Sci. Technol, 4, p. 947 (1989).Google Scholar
4 Tu, C.W., Chang, R.P.H., Schlier, A.R., Appl. Phys. Lett, 41, p. 80 (1982).Google Scholar
5 Chuang, M.C., Colburn, J.W., J. Appl. Phys, 67, p. 4372 (1990).Google Scholar
6 Cabrera, N. Mou, N.F., Rep. Prog. Phys, 12, p. 163 (1948).Google Scholar
7 Wang, Y. Hu, Y.Z., Irene, E.A., Vac, J., Sci. Technol. B, 14 (3), p. 1687 (1996).Google Scholar
8 Bruno, G. Losurdo, M., Capezzuto, P., Vac, J., Sci. Technol. A, 13, p. 349 (1995).Google Scholar
9 Bruggemann, D.A.G., Ann. Phys. (Liepzig), 24, p. 636 (1935).Google Scholar
10 Bruno, G., Capezzuto, P., Losurdo, M., Phys. Rew. B, 54 (23), p. 1 (1996).Google Scholar
11 Weegels, L.M. Saitou, T., Kanbe, H., Appl. Phys. Lett, 66 (21), p. 2870 (1995).Google Scholar