Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T14:16:22.734Z Has data issue: false hasContentIssue false

Processing and Properties of Amorphous Manganese Dioxide Formed by Sol-Gel Procedures

Published online by Cambridge University Press:  10 February 2011

Jun John Xu
Affiliation:
Corrosion Research Center, Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
Stefano Passerini
Affiliation:
Corrosion Research Center, Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
Boone B. Owens
Affiliation:
Corrosion Research Center, Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
William H. Smyrl
Affiliation:
Corrosion Research Center, Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

Sol-gel derived amorphous manganese dioxide (a-MnO2) showed extremely high reversible lithium intercalation capacity. The composition and structure of the material were modified by heating at different temperatures. Cycling performance of the modified samples suggests that lowering the water content in the material is beneficial, while introducing crystallinity is detrimental, to its cyclability. A novel double-solvent-exchange process was tried for the processing of the material. Preliminary results indicated significant improvement in the reversibility of the insertion/release cycles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a) Thackeray, M. M., David, W. I. F., Bruce, P. G. and Goodenough, J. B., Mater. Res. Bull., 18, 461 (1983); (b) J. - M. Tarascon and D. Guyomard, Electrochimica Acta, 38, 1221 (1993); (c) G. Pistoia and G. Wang, Solid State Ionics, 66, 135 (1993).Google Scholar
2. Armstrong, A. R. and Bruce, P. G., Nature, 381, 499 (1996).Google Scholar
3. (a) Thackeray, M. M., Prog. Batteries & Battery Materials, 14, 1 (1995); (b) B. Zachau-Christiansen, K. West, et al. Solid State Ionics, 70/71, 401 (1994); (c) J. C. Hunter, J. Solid State Chem., 39, 142 (1981); (d) S. Bach, M. Henry and J. Livage, J. Solid State Chem., 88, 325 (1990).Google Scholar
4. (a) Ching, S., Petrovay, D. J., Jorgensen, M. L. and Suib, S. L., Inorg. Chem., 36, 883 (1997); (b) P. LeGoff, N. Baffier, S. Bach and J. P. Pereira-Ramos, J. Mater. Chem., 4, 875 (1994); (c) P. LeGoff, N. Baffler, S. Bach and J. P. Pereira-Ramos, Mater. Res. Bull., 31, 63 (1994).Google Scholar
5. Manhart, L. H., Owens, B. B., Smyrl, W. H., and Xu, J. J., in Proceedings of the 38th Power Sources Conference, IEEE, Cherry Hill, NJ (1998).Google Scholar
6. Leroux, F. and Nazar, L. F., Solid State lonics, 100, 103 (1997).Google Scholar
7. Kim, J. and Manthiram, A., Nature, 390, 265 (1997).Google Scholar
8. Aronson, B. J., Kinser, A. K., Passerini, S., Smyrl, W. H. and Stein, A., Chem. Materials, submitted.Google Scholar
9. Xu, J. J., Kinser, A. J., Owens, B. B. and Smyrl, W. H., Solid State Electrochem. Lett., 1, 1 (1998).Google Scholar
10. Owens, B. B., Smyrl, W. H. and Xu, J. J., J. Power Sources, forthcoming.Google Scholar
11. Coustier, F., Passerini, S. and Smyrl, W. H., J. Electrochem. Soc., 145, L73 (1998).Google Scholar
12. Coustier, F., Lee, J.-M., Passerini, S. and Smyrl, W. H., Solid State Ionics, forthcoming.Google Scholar