No CrossRef data available.
Published online by Cambridge University Press: 25 July 2013
Electrical energy storage plays a key role in mobile electronic devices, stationary power systems, and hybrid electrical vehicles. High energy density capacitors based on dielectric polymers are a focus of increasing research effort motivated by the possibility to realize compact and flexible energy storage devices, taking advantage of light weight and facile processability of organic materials. In addition, dielectric polymers enjoy inherent advantages of self-healing mechanism and high breakdown strength, leading to capacitors with great reliability and high energy density. It is the focus of this group to develop a multilayered ferroelectric PVDF system for improved energy storage efficiency. These systems are fabricated using enabling technology in co-extrusion which allows more cost effective and large area device production as opposed to more conventional layer-by-layer techniques. Many efforts have been made by the team to fabricate these micro- and nano-layered systems resulting in much improved device performance. A three-time improvement of capacitive electrical energy density has been demonstrated. The focus of this research is to understand the physics of why these multilayered systems perform better than a single layer by developing a characterization technique using both confocal second harmonic generation (SHG) and electric field induced second harmonic (EFISH) laser spectroscopy. Our results have shown that SHG is a very sensitive, non-destructive and versatile technique that can be used to study the ferroelectric and structural properties of layered systems. When combined with EFISH this technique allows the interrogation of structural and dielectric properties within the individual layers and at the interfaces between the layers. Further, the proposed techniques can be readily employed in-situ which can provide information in real time during sample processing with static and time-resolved spectroscopic measurements.