Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T10:16:15.009Z Has data issue: false hasContentIssue false

Precipitation of high-quality multilayer-graphene using Al2O3 barrier and Au cap layers

Published online by Cambridge University Press:  26 August 2015

Jumpei Yamada
Affiliation:
Department of Materials Science and Engineering, Meijo University, Nagoya 468-8502, Japan
Manabu Suzuki
Affiliation:
Department of Materials Science and Engineering, Meijo University, Nagoya 468-8502, Japan
Yuki Ueda
Affiliation:
Department of Materials Science and Engineering, Meijo University, Nagoya 468-8502, Japan
Takahiro Maruyama
Affiliation:
Department of Applied Chemistry, Meijo University, Nagoya 468-8502, Japan
Shigeya Naritsuka
Affiliation:
Department of Materials Science and Engineering, Meijo University, Nagoya 468-8502, Japan
Get access

Abstract

The mechanism for the precipitation of multilayer graphene was investigated with respect to the use of an Al2O3 barrier layer and Au capping layer. The Al2O3 barrier layer suppresses the dissolution of carbon into the catalyst, especially at low temperature, and assists a decrease in the density of graphene nuclei. On the other hand, the Au capping layer is beneficial to weaken the strong binding between the catalyst and the graphene carbon atoms, and enhances the surface migration of precipitated carbon adatoms. A combination of the Al2O3 barrier layer and Au capping layer is useful for the synthesis of high-quality graphene with large grains. On a sample with both layers annealed for 60 min, the area of 5-layer graphene islands is as large as 10 μm, and covers 60% of the entire surface. The Raman D/G band intensity ratio of 0.024 indicates the precipitated graphene is high quality.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Geim, A. K. and Novoselov, K. S., Nat. Mater., 6 (2007) 183191.CrossRefGoogle Scholar
Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., and Geim, A. K., Proc. Natl. Acad. Sci. U.S.A., 102 (2005) 1045110453.CrossRefGoogle Scholar
Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., and Geim, A.K., Science, 320 (2008) 1308.CrossRefGoogle Scholar
Morozov, S. V., Novoselov, K. S., Katsnelson, M. I., Schedin, F., Elias, D. C., Jaszczak, J. A., and Geim, A. K., Phys. Rev. Lett., 100 (2008) 016602–1-4.CrossRefGoogle Scholar
Zheng, M., Takei, K., Hsia, B., Fang, H., Zhang, X., Ferralis, N., Ko, H., Chueh, Y.-L., Zhang, Y., Maboudian, R., and Javey, A., Appl. Phys. Lett., 96 (2010) 063110–1-3.CrossRefGoogle Scholar
Hofrichter, J., Szafranek, B. N., Otto, M., Echtermeyer, T. J., Baus, M., Majerus, A., Geringer, V., Ramsteiner, M., and Kurz, H., Nano Lett., 10 (2010) 3642.CrossRefGoogle Scholar
Weatherup, R. S., Baehtz, C., Dlubak, B., Bayer, B. C., Kidambi, P. R., Blume, R., Schloegl, R., and Hofmann, S., Nano Lett., 13 (2013) 46244631.CrossRefGoogle Scholar
Fujita, D. and Homma, T., Sur. Inter. Anal., 19 (1992) 430434.CrossRefGoogle Scholar
Gutierrez, G., Normand, F. L., Muller, D., Aweke, F., Speisser, C., Antoni, F., Gall, Y. L., Lee, C. S., and Cojocaru, C. S., Carbon, 66 (2014) 110.CrossRefGoogle Scholar
Gutierrez, G., Normand, F. L., Aweke, F., Muller, D., Speisser, C., and Antoni, F., Appl. Sci., 4 (2014) 180194.CrossRefGoogle Scholar
Sato, M., Takahashi, M., Nakano, H., Takakuwa, Y., Nihei, M., Sato, S., and Yokoyama, N., Jpn. J. Appl. Phys., 53 (2014) 04EB05.CrossRefGoogle Scholar
Ferrari, A. C., Solid State Commun., 143 (2007) 4757.CrossRefGoogle Scholar
Weatherup, R. S., Bayer, B. C., Blume, R., Ducati, C., Baehtz, C., Schlogl, R., and Hofmann, S., Nano Lett., 11 (2011) 41544160.CrossRefGoogle Scholar
Shelton, J. C., Patil, H. R. and Blakely, J. M., Surf. Sci., 43 (1974) 493520.CrossRefGoogle Scholar