No CrossRef data available.
Published online by Cambridge University Press: 10 March 2014
We developed a new highly porous polyimide (PI) -silica composite with high flexibility, mechanical strength, and heat resistance. The composite was prepared by a new process consisting of (1) phase separation of a mixture of PI precursor (polyamic acid), solvent, and silicon alkoxide, induced by high-pressure CO2 (40 °C, 20 MPa), (2) silicate formation by sol-gel reaction, and (3) supercritical CO2 extraction of the solvent. The composite had a bimodal porous structure with micropores of 10-30 μm and nanopores of ∼50 nm. In the PI matrix, silica nanoparticles (< 100 nm in diameter) were highly dispersed. Porosity of the composite was 78%, which is higher than that of conventional porous PI prepared by physical foaming technique. Relative dielectric constant of the material was lower than 1.4 at 1 MHz. The porous PI-silica composite sheet was flexible enough to be folded without cracking. Notably, the Young’s modulus (0.80 GPa) and the onset decomposition temperature (600 °C) of the PI-silica composite were higher than those of conventional porous PI with similar porosity, respectively. The porous PI-silica composite is promising as a flexible thermal insulator for high-temperature use and as a thermal resistant low-k material.