Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T15:17:05.968Z Has data issue: false hasContentIssue false

Porosity in Polysilsesquioxane Xerogels

Published online by Cambridge University Press:  10 February 2011

Brigitta M. Baugher
Affiliation:
Catalysts Department, Sandia National Laboratories, Albuquerque, NM 87185–1407, daloy@sandia.gov
Duane A. Schneider
Affiliation:
Catalysts Department, Sandia National Laboratories, Albuquerque, NM 87185–1407, daloy@sandia.gov
Douglas A. Loy
Affiliation:
Catalysts Department, Sandia National Laboratories, Albuquerque, NM 87185–1407, daloy@sandia.gov
Kamyar Rahimian
Affiliation:
Catalysts Department, Sandia National Laboratories, Albuquerque, NM 87185–1407, daloy@sandia.gov
Get access

Abstract

Polymerization of organotrialkoxysilanes is a convenient method for introducing organic functionality into hybrid organic-inorganic materials. However, not much is known about the effects of the organic substituent on the porosity of the resulting xerogels. In this study, we prepared a series of polysilsesquioxane xerogels from organotrialkoxysilanes, RSi(OR′)3, with different organic groups (R = H, Me, Et, dodecyl, hexadecyl, octadecyl, vinyl, chloromethyl, cyanoethyl). Polymerizations of the monomers were carried out under a variety of conditions, varying monomer concentration, type of catalyst, and alkoxide substituent. The effect of the organic substituent on the sol-gel process was often dramatic. In many cases, gels were formed only at very high monomer concentration and/or with only one type of catalyst. All of the gels were processed as xerogels and characterized by scanning electron microscopy and nitrogen sorption porosimetry to evaluate their pore structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Plueddemann, E. P., Silane Coupling Agents (Plenum: New York, 1982).10.1007/978-1-4899-0342-6Google Scholar
(2) Baney, R. H, Itoh, M., Sakakibara, A., Suzuki, T., Chem. Rev., 95, 1409 (1995).10.1021/cr00037a012Google Scholar
(3) Kim, S. M., Yoon, D. Y., Nguyen, C. V., Han, J., Jaffe, R. L. in Low-Dielectric Constant Materials III (Mater. Res. Soc. Symp. Proc. 511, Pittsburg, PA, 1998), 3947.Google Scholar
(4) Loy, D. A., Baugher, B. M., Schneider, D. A., Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 39(2), 418419 (1998).Google Scholar
(5) Schneider, D. A., Loy, D. A., Baugher, B. M., Wheeler, D. R., Assink, R. A., Alam, T. M., Saunders, R., Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 39(2), 513514(1998).Google Scholar
(6) 1. Slinyakova, B., Kurennaya, L. I., Vysokomol. Soedin., Ser. B. 14, 889 (1972).Google Scholar
(7) Shimojima, A., Sugahara, Y., Kuroda, K., Bull. Chem. Soc. Jpn. 70, 2847 (1997).10.1246/bcsj.70.2847Google Scholar
(8) Kaneko, K. J. Membr. Sci., 96(1+2), 5989 (1994).10.1016/0376-7388(94)00126-XGoogle Scholar
(9) Pauthe, M., Phalippou, J., Corriu, R. J. P., Leclercq, D., Vioux, A., , A., J. Non-Cryst. Solid 113, 21 (1989).10.1016/0022-3093(89)90313-XGoogle Scholar
(10) 1. Slinyakova, B., Voronkov, M. G., Krot, I. E., Kolloid. Zh., 35(3), 480–5 (1973).Google Scholar