Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T20:46:57.600Z Has data issue: false hasContentIssue false

Polarization dependent Raman spectroscopy characterization of kesterite Cu2ZnSnS4 single crystals

Published online by Cambridge University Press:  28 August 2013

D. O. Dumcenco
Affiliation:
Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
Y. P. Wang
Affiliation:
Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
S. Levcenco
Affiliation:
Helmholtz Zentrum Berlin f¨ur Materialien and Energie GmbH, D-14109 Berlin, Germany
K. K. Tiong
Affiliation:
Department of Electrical Engineering, National Taiwan Ocean University, Keelung 202, Taiwan
Y. S. Huang
Affiliation:
Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
Get access

Abstract

The vibrational properties of kesterite Cu2ZnSnS4 (CZTS) single crystals were studied by polarization-dependent Raman scattering measurements. The CZTS crystals grown by chemical vapor transport technique using iodine trichloride as a transport agent consist of several mirror-like planes. The detailed analysis of the experimental spectra obtained from different planes allows determining the symmetry assignment of the observed Raman-active modes. The wavenumber values of Raman-active modes are compared with the results of recent theoretical calculations. The presented data are useful for examination of CZTS absorber films applied for solar cells to clarify the existence of structural or phase inhomogeneities.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Weber, A., Krauth, H., Perlt, S., Schubert, B., Kötschau, I., Schorr, S., Schock, H. W., Thin Solid Films 517, 25242526 (2009).CrossRefGoogle Scholar
Katagiri, H., Jimbo, K., Maw, W.S., Oishi, K., Yamazaki, M., Araki, H., Takeuchi, A., Thin Solid Films 517, 24552560 (2009).CrossRefGoogle Scholar
Suresh Babu, G., Kishore Kumar, Y.B., Uday Bhaskar, P., Sundara Raja, V., Sol. Energy Mater. Sol. Cells 94, 221226 (2010).CrossRefGoogle Scholar
Ito, K. and Nakazawa, T., Jpn. J. Appl. Phys. 27, 20942097 (1988).CrossRefGoogle Scholar
Kamoun, N., Bouzouita, H., Rezig, B., Thin Solid Films 515, 59495952 (2007).CrossRefGoogle Scholar
Levcenco, S., Dumcenco, D., Wang, Y.P., Huang, Y.S., Ho, C.H., Arushanov, E., Tezlevan, V., Tiong, K.K., Opt. Mater. 34, 13621365 (2012).CrossRefGoogle Scholar
Barkhouse, D. A. R., Gunawan, O., Gokmen, T., Todorov, T. K., and Mitzi, D. B., Prog. Photovolt: Res. Appl. 20, 6 (2012).CrossRefGoogle Scholar
Dumcenco, D. and Huang, Y.S., Opt. Mater. 35, 419425 (2013).CrossRefGoogle Scholar
Wang, K., Gunawan, O., Todorov, T.K., Shin, B., Chey, S.J., Bojarczuk, N. A., Mitzi, D., Guha, S., Appl. Phys. Lett. 97, 143508 (2010).CrossRefGoogle Scholar
Gürel, T., Sevik, C., Çağin, T., Phys. Rev. B 84, 205201 (2011).CrossRefGoogle Scholar
Khare, A., Himmetoglu, B., Johnson, M, Norris, D.J., Cococcioni, M., Aydil, E.S., J. Appl. Phys. 111, 083707 (2012).CrossRefGoogle Scholar
Himmrich, M. and Haeuseler, H., Spectrochim. Acta A 47, 933942 (1991).CrossRefGoogle Scholar
Altosaar, M., Raudoja, J., Timmo, K., Danilson, M., Grossberg, M., Krustok, J., Mellikov, E., Phys. Status Solidi A 205, 167170 (2008).CrossRefGoogle Scholar
Fernandes, P.A., Salomé, P.M.P., da Cunha, A.F., J. Alloys Compd. 509, 76007606 (2011).CrossRefGoogle Scholar
Siebentritt, S. and Schorr, S., Prog. Photovolt: Res. Appl. 20, 512 (2012).CrossRefGoogle Scholar
Chen, S., Gong, X.G., Walsh, A., Wei, S., Phys. Rev. B 79, 165211 (2009).CrossRefGoogle Scholar
Schorr, S., Sol. Energy Mater. Sol. Cells 95, 14821488 (2011).CrossRefGoogle Scholar
Damen, T.C., Porto, S.P.S., Tell, B., Phys. Rev. 142, 570574 (1966).CrossRefGoogle Scholar
Polarization Selection Rules provided by Bilbao Crystallographic Server http://www.cryst.ehu.es/cryst/polarizationselrules.html Google Scholar
Kuzmany, H., Solid-State Spectroscopy. An Introduction, (Springer, Berlin, 1998).CrossRefGoogle Scholar
Wang, Y. and Gong, H., J. Electrochem. Soc. 158, H800H803 (2011).CrossRefGoogle Scholar
Cheng, A.J., Manno, M., Khare, A., Leighton, C., Campbell, S.A., Aydil, E.S., J. Vac. Sci. Technol. A 29, 051203 (2011).CrossRefGoogle Scholar
Levcenko, S., Tezlevan, V.E., Arushanov, E., Schorr, S., Unold, T., Phys. Rev. B 86, 045206 (2012).CrossRefGoogle Scholar
Fontané, X., Izquierdo-Roca, V., Saucedo, E., Schorr, S., Yukhymchuk, V.O., Valakh, M.Ya., Pérez-Rodríguez, A., Morante, J.R., J. Alloys Compd. 539, 190194 (2012).CrossRefGoogle Scholar
Yoo, H. and Kim, J.H., Thin Solid Films 518, 65676572 (2010).CrossRefGoogle Scholar
Grossberg, M., Krustok, J., Raudoja, J., Raadik, T., Appl. Phys. Lett. 101, 102102 (2012).CrossRefGoogle Scholar