Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T23:45:08.476Z Has data issue: false hasContentIssue false

Polarization behavior of the exciton-polariton emission of ZnO-based microresonators

Published online by Cambridge University Press:  31 January 2011

Chris Sturm
Affiliation:
csturm@physik.uni-leipzig.de, Universität Leipzig, Institut für Experimentelle Physik II, Leipzig, Germany
Helena Hilmer
Affiliation:
h.hilmer@physik.uni-leipzig, Universität Leipzig, Institut für Experimentelle Physik II, Leipzig, Germany
Rüdiger Schmidt-Grund
Affiliation:
schmidtg@rz.uni-leipzig.de, Universität Leipzig, Institut für Experimentelle Physik II, Leipzig, Germany
Marius Grundmann
Affiliation:
grundmann@physik.uni-leipzig.de, Universität Leipzig, Institut für Experimentelle Physik II, Leipzig, Germany
Get access

Abstract

We present the polarization behavior of the exciton-polariton luminescence of a ZnO-based all-oxide resonator. A splitting in the emission energy between the s- and p-polarized pho-toluminescence of the lower polariton branch was observed which increases with increasing emission angle. It is caused by the polarization behavior of the uncoupled cavity-photon mode, and reaches a maximum of about 5 meV at an emission angle near the bottleneck region. For lar-ger angles the energy splitting decreases. Additionally to the energy splitting, we observed dif-ferences in the photoluminescence intensity which we trace back to different occupation of the lower polariton branch for the two polarizations. Whereas for p-polarization a bottleneck effect is clearly observable, this effect is much weaker for s-polarization. These findings indicate that the relaxation of hot carriers into the bottleneck region is enhanced for the p-polarized photolumi-nescence compared to the s-polarized one. The differences between these two polarizations are most pronounced for a very large negative detuning and vanish with increasing detuning.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kavokin, A., Malpuech, G., Cavity polaritons, Elsevier, 2003.Google Scholar
2 Tsintzos, S. I., Pelekanos, N. T., Konstantinidis, G., Hatzopoulos, Z., Savvidis, P. G., Nature 453, 372 (2008).Google Scholar
3 Saba, M., Ciuti, C., Bloch, J., Thierry-Mieg, V., André, R., Dang, D. Le Si, Kundermann, S., Mura, A., Bongiovanni, G., Staehli, J. L., and Deveaud, B., Nature 414, 731 (2001).Google Scholar
4 Kasprzak, J., Richard, M., Kundermann, S., Baas, A., Jeambrun, P., Keeling, J. M. J., Marchetti, F. M., Szymaska, M. H., André, R., Staehli, J. L., Savona, V., Littlewood, P. B., Deveaud, B., and Dang, D. Le Si, Nature 443, 409 (2006).Google Scholar
5 Christopoulos, S., Högersthal, G. Baldassarri Höger von, Grundy, A. J. D., Lagoudakis, P. G., Kavokin, A. V., Baumberg, J. J., Christmann, G., Butté, R., Feltin, E., Carlin, J.-F., and Grandjean, N., Phys. Rev. Lett. 98, 126405 (2007).Google Scholar
6 Panzarini, G., Andreani, L. Claudio, Armitage, A., Baxter, D., Skolnick, M. S., Astratov, V. N., Roberts, J. S., Kavokin, A. V., Vladimirova, M. R., and Kaliteevski, M. A., Phys. Rev. B 59, 5082 (1999).Google Scholar
7 Médard, F., Zuniga-Perez, J., Disseix, P., Mihailovic, M., Leymarie, J., Vasson, A., Semond, F., Frayssinet, E., Moreno, J. C., Leroux, M., Faure, S., and Guillet, T., Phys. Rev. B 79, 125302 (2009).Google Scholar
8 Chichibu, S. F., Uedono, A., Tsukazaki, A., Onuma, T., Zamfirescu, M., Ohtomo, A., Kavokin, A., Cantwell, G., Litton, C. W., Sota, T. and Kawasaki, M., Semicond. Sci. Technol. 20, S67 (2005).Google Scholar
9 Sturm, C., Hilmer, H., Schmidt-Grund, R., and Grundmann, M., New J. Phys. 11, 073044 (2009).Google Scholar
10 Sturm, C., Hilmer, H., Schmidt-Grund, R., Czekalla, C., Sellmann, J., Lenzner, J., Lorenz, M., and Grundmann, M., J. Vac. Sci. Technol. B 27, 1726 (2009).Google Scholar
11 Hilmer, H., Sellmann, J., Sturm, Ch., Schmidt-Grund, R., Rheinländer, B., Hochmuth, H., Lenzner, J., Lorenz, M., and Grundmann, M., AIP Conf. Proc. acceptedGoogle Scholar
12 Born, M. and Wolf, E., Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Cambridge University Press, 1999.Google Scholar
13 Porras, D., Ciuti, C., Baumberg, J. J., and Tejedor, C., Phys. Rev B 66, 085304 (2002).Google Scholar
14 Deng, H., Press, D., Götzinger, S., Solomon, G. S., Hey, R., Ploog, K. H., and Yamamoto, Y., Phys Rev. Lett. 97, 146402 (2006).Google Scholar
15 Cao, H.T., Doan, T. D., Thoai, D.B. Tran, Haug, H., Sol. Stat. Comm. 144, 359 (2007).Google Scholar
16 Tassone, F. and Yamamoto, Y., Phys. Rev B 59, 10830 (1999).Google Scholar
17 Johne, R.. Solnyshkov, D. D., and Malpuech, G., Appl. Phys. Lett. 93, 249902 (2008).Google Scholar