Published online by Cambridge University Press: 16 February 2011
Positron annihilation lifetime spectroscopy (PALS) is a unique technique for detection of vacancy related defects in both as-grown and irradiated materials. We present a systematic study of vacancy defects in stoichiometrically controlled p-type Gallium Arsenide grown by the Hot- Wall Czochralski method. Microstructural information based on PALS, was correlated to crystallographic data and electrical measurements. Vacancies were detected and compared to electrical levels detected by deep level transient spectroscopy and stoichiometry based on crystallographic data.