Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T14:13:28.106Z Has data issue: false hasContentIssue false

Point Defects, Diffusion and Gettering in Silicon

Published online by Cambridge University Press:  15 February 2011

U. Gösele
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany
D. Conrad
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany
P. Werner
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany
Q.-Y. Tong
Affiliation:
School of Engineering, Duke University, Durham, NC 27708–0300, USA
R. Gafiteanu
Affiliation:
School of Engineering, Duke University, Durham, NC 27708–0300, USA
T. Y. Tan
Affiliation:
School of Engineering, Duke University, Durham, NC 27708–0300, USA
Get access

Abstract

The status of our knowledge on intrinsic point defects and diffusion mechanisms is reviewed. Special attention is given to the question of the possible role of carbon in influencing effective diffusivities of intrinsic point defects and the resulting consequences for the values of vacancy and self-interstitial thermal equilibrium concentrations and diffusivities. It is pointed out that we might have to deal with the unfortunate situation that the effective diffusivities of intrinsic point defects might be influenced already by a carbon concentration which is below the detection limit and therefore not amenable to measurement and control. Whereas dopant diffusion processes have been modeled and simulated for a long time the first attempts to quantitatively simulate various gettering processes have just started as will be described in the paper. Finally, the subject of microcrack formation in hydrogen implanted silicon will be dealt with as used for the so-called “smart-cut” process for fabricating silicon-on-insulator (SOI) substrates with thin and uniform silicon layers by wafer bonding. Presently no quantitative treatment of this fascinating hydrogen agglomeration phenomenon is available.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Seeger, A. and Chik, C.P., phys. stat. sol. 29, 455 (1968).Google Scholar
Frank, W., Gösele, U., Mehrer, H., and Seeger, A., in: Diffusion in Crystalline Solids, Murch, G. E. and Nowick, A., eds. New York, Academic Press, p. 31 (1984).Google Scholar
3. Fair, R. B., in : Advances in Chemistry Series, 221, 265 (1989).Google Scholar
4. Fahey, P., Griffin, R. B., and Plummer, J. D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
5. Gösele, U. and Tan, T. Y., in: Diffusion in Solids; Unsolved Problems, Murch, G. E., ed., Zürich, Trans Tech Publications, p. 189 (1992).Google Scholar
6. Taylor, W., Marioton, B. P. R., Tan, T. Y., and Gösele, U., Rad. Effects and Defects in Solids 111&112, 131 (1989).Google Scholar
7. Gösele, U., Frank, W., and Seeger, A., Appl. Phys. 23, 361 (1980).Google Scholar
8. Stolwijk, N. A., Schuster, B., Hölzl, J., Mehrer, H., and Frank, W., Physica 115B, 335 (1983).Google Scholar
9. Frank, F. C. and Turnbull, D., Phys. Rev. 104, 617 (1959).Google Scholar
10. Tan, T. Y. and Gösele, U., Appl. Phys. A 37, 1 (1985).Google Scholar
11. Gösele, U., Plöβl, A., and Tan, T. Y., Electrochem. Soc. Proc. 96–4, 309 (1996).Google Scholar
12. Perret, M., Stolwijk, N. A., and Coshausz, L., J. Phys. Cond. Mater. 1, 6347 (1989).Google Scholar
13. Stolwijk, N. A., Schuster, B., Hölzl, J., Mehrer, H., and Frank, W., Physica 115B, 335 (1983).Google Scholar
14. Mantovani, S., Nava, F., Nobili, C., and Ottaviani, G., Phys. Rev. B 33, 5536 (1986).Google Scholar
15. Hauber, J., Frank, W., and Stolwijk, N. A., Mat. Science Forum 38–41, 707 (1989).Google Scholar
16. Wilcox, W. R., LaChapelle, T. J., and Forbes, D. H., J. Electrochem. Soc. 111, 1377 (1964).Google Scholar
17. Kitagawa, H., Hashimoto, K., and Yoshida, M., Jpn. J. Appl. Phys. 21, 446 (1982).Google Scholar
18. Morehead, F., Stolwijk, N. A., Meyberg, W., and Gosele, U., Appl. Phys. Lett. 42, 690 (1983).Google Scholar
19. Gossmann, H.-J., Rafferty, C. S., Stolk, P. A., Eaglesham, D. J., Gilmer, G. H., Poate, J. M., Vuong, H.-H., Mogi, T. K., and Thompson, M. O., Mat. Res. Soc. Symp. Proc. 389, 3 (1995).Google Scholar
20. Gossmann, H.-J., Gilmer, G. H., Rafferty, C. S., Unterwald, F. C., Boone, T., Poate, J. M., Luftman, H. S., and Frank, W., J. Appl. Phys. 77, 1948 (1995).Google Scholar
21. Stolk, P. A., Gossmann, H.-J., Eaglesham, D. J., Jacobson, D. C., Poate, J. M., and Luftmann, H. S., Appl. Phys. Lett. 66, 568 (1995).Google Scholar
22. Stolk, P. A., Eaglesham, D. J., Gossmann, H.-J., and Poate, J. M., Appl. Phys. Lett. 66, 1370 (1995).Google Scholar
23. Stolk, P. A., Gossmann, H.-J., Eaglesham, D. J., and Poate, J. M., Nucl. Instrum. Methods B 96, 187 (1995).Google Scholar
24. Gossmann, H.-J., Stolk, P. A., Eaglesham, D. J., Gilmer, G. H. and Poate, J. M., Electrochem. Soc. Proc. 96–4, 64 (1996).Google Scholar
25. Gossmann, H.-J., Stolk, P. A., Eaglesham, D. J., Rafferty, C. S., and Poate, J. M., Appl. Phys. Lett. 67, 3135 (1995).Google Scholar
26. Bracht, H., Stolwijk, N. A., and Mehrer, H., Phys. Rev. B 52, December 15 issue (1995).Google Scholar
27. Stolwijk, N. A., Hölzl, J., Frank, W., Weber, E. R., and Mehrer, H., Appl. Phys. A 39, 37 (1986).Google Scholar
28. Rafferty, C S., Gilmer, G. H., Jaraiz, M., Eaglesham, D. and Gossmann, H.-J., Appl. Phys. Lett. 68, 2395 (1996).Google Scholar
29. Huh, H.-Y., Gösele, U., and Tan, T. Y., J. Appl. Phys. 78, 5926 (1995).Google Scholar
30. Bronner, G. B. and Plummer, J. D., J. Appl. Phys. 61, 5286 (1987).Google Scholar
31. Morehead, F., Mat. Res. Soc. Symp. Proc. 104, 99 (1988).Google Scholar
32. Bronner, G. B. and Plummer, J. D., Appl. Phys. Lett. 46, 510 (1985).Google Scholar
33. Seeger, A., Foil, H., and Frank, W., in : Radiation Effects in Semiconductors, Urli, N. and Corbett, J. W., eds., Bristol, Inst. Physics, p. 12 (1977).Google Scholar
34. Griffin, R. B. and Plummer, J. D., in: Proc. Int. Electron Dev. Meeting, p. 522 (1986).Google Scholar
35. Taniguchi, K., Antoniadis, D. A., and Matsushita, Y., Appl. Phys. Lett. 42, 961 (1983).Google Scholar
36. Wada, K., Inoue, N., and Osaka, J., in: Defects in Semiconductors II, Mahajan, S. and Corbett, J. W., eds., New York, North-Holland, p. 125 (1983).Google Scholar
37. Agarwal, A. M. and Dunham, S. T., Appl. Phys. Lett. 63, 800 (1993).Google Scholar
38. Ahn, S. T., Griffin, P. B., and Shott, J. D., Plumer, J. D., and Tiller, W. A., J. Appl. Phys. 62, 4745 (1987).Google Scholar
39. Boit, C., Lau, F., and Sittig, R., Appl. Phys. A50, 197 (1990).Google Scholar
40. Bracht, H., Stolwijk, N. A., and Mehrer, H., Mat. Science Forum 143–147, 785 (1994).Google Scholar
41. Budil, M., Heinrich, M., Schrems, M., and Pötzl, H., J. Electrochem. Soc. 137, 3931 (1990).Google Scholar
42. Ghaderi, K., Hobler, G., Budil, M., Mader, L., and Schulze, H. J., J. Appl. Phys. 77, 1320 (1995).Google Scholar
43. Gossmann, H.-J., Rafferty, C. S., Luftman, H. S., Unterwald, F. C., Boone, T., and Poate, J. M., Appl. Phys. Lett. 63, 639 (1993).Google Scholar
44. Griffin, P. B., Fahey, P. M., Plummer, J. D., and Dutton, R. W., Appl. Phys. Lett. 47, 319 (1985).Google Scholar
45. Leroy, B., J. Appl. Phys. 50, 7998 (1979).Google Scholar
46. Mathiot, D., Appl. Phys. Lett. 51, 904 (1987).Google Scholar
47. Okino, T., Jpn. J. Appl. Phys. 32, L856 (1993).Google Scholar
48. Okino, T. and Onishi, M., Jpn. J. Appl. Phys. 33, 6642 (1994).Google Scholar
49. Orlowski, M., Appl. Phys. Lett. 58, 1479 (1991).Google Scholar
50. Scheid, E. and Chenevier, P., phys. stat. sol. (a) 93, 523 (1986).Google Scholar
51. Wijarankula, W., J. Appl. Phys. 67, 7624 (1990).Google Scholar
52. Zimmermann, H. and Ryssel, H., Appl. Phys. A 55, 15562 (1992).Google Scholar
53. Gossmann, H.-J., Rafferty, C. S., Vredenburg, A. M., Luftman, H. S., Unterwald, F. C., Eaglesham, D. J., Jacobson, D. C., Boone, T., and Poate, J. M., Appl. Phys. Lett. 64, 312 (1994).Google Scholar
54. Wada, K. and Inoue, N., in: Defects and Properties of Semiconductors: Defect Engineering, Chikawa, J., Sumino, K., and Wada, K., eds., Tokyo, KTK Scientific Publishers, p. 169 (1987).Google Scholar
55. Zimmermann, H., Appl. Phys. Lett. 59, 3133 (1991).Google Scholar
56. Taylor, W., Gosele, U., and Tan, T. Y., in: Proc. 3rd Int. Symp. Process Physics and Modeling in Semicond. Techn., Srinivasan, G., Taniguchi, K., and Murthy, C. S., Pennington, The Electrochem. Soc., p. 3 (1993).Google Scholar
57. Watkins, G. D., Troxell, J. R., and Chatterjee, A. P., in: Defects and Radiation Effects in Semiconductors 1978, Albany Inst. Phys. Conf. Ser. no. 66, 16 (1979).Google Scholar
58. Watkins, G. D., in: Materials Science and Technology, Cahn, R. W., Haasen, P., and Kramer, E. J., eds., Vol. 4, 106 (1991) and references there in.Google Scholar
59. Maroudas, D. and Brown, R. A., Appl. Phys. Lett. 62, 172 (1993).Google Scholar
60. Maroudas, D. and Brown, R. A., Phys. Rev. B 47, 172 (1993).Google Scholar
61. Blöchl, P. E., Smargiassi, E., Car, R., Laks, D. B., Andreoni, W. and Pantelides, S. T., Phys. Rev. Lett. 70, 2435 (1993).Google Scholar
62. Gilmer, G. H., de la Rubia, T. D., Stock, D. M., Jaraiz, M., Nucl. Instr. & Methods B102, 247 (1995).Google Scholar
63. Sinno, T., Jing, Z. K., and Brown, R., Appl. Phys. Lett. 68, 3028 (1996).Google Scholar
64. Konoplev, V. and Heinig, K.-H., submitted to Appl. Phys. Lett.Google Scholar
65. Konoplev, V. and Heinig, K.-H., private communication.Google Scholar
66. Kalejs, J. P., Ladd, L. A., and Gösele, U., Appl. Phys. Lett. 45, 268 (1984).Google Scholar
67. Davis, G. and Newman, R. C., in Handbook of Semiconductors, vol. 3, 2nd edition, edt. Mahajan, S. (North-Holland, Amsterdam, 1994), p. 1557.Google Scholar
68. Kolbesen, B. O., Solid-State Electronics 25, 759 (1982).Google Scholar
69. Gösele, U., Mat. Res. Soc. Symp. Proc. 59, 419 (1986).Google Scholar
70. Newman, R. C. and Wakefield, J., J. Phys. Solids 19, 230 1961).Google Scholar
71. Rollert, F., Stolwijk, N. A., and Mehrer, H., Materials Science Forum 38–41, 753 (1989).Google Scholar
72. Tipping, A. K. and Newman, R. C., Semicond. Sci. Technol. 2, 315 (1987).Google Scholar
73. Zhu, J., de la Rubia, T. D., and Mailhiot, Ch., MRS Proc. 1996 Fall Meeting, in press.Google Scholar
74. Mogi, T. K., Thompson, M. J., Gossmann, H.-J., Poate, J. M.,, and Luftman, H. S., Appl. Phys. Lett. 69, 1273 (1996).Google Scholar
75. Cowern, N. E. A., Cacciato, A., Custer, J. S., Saris, F. W., and Vandervorst, W., Appl. Phys. Lett. 68, 1150 (1996).Google Scholar
76. Cristiano, F., Bonafos, C., Nejim, A., Lombardo, S., Omri, M., Alquier, D., Martinez, A., Campisano, S. U., Hemment, P. L. F., and Claverie, A., Nucl. Instr. Methods B127/128 (1997), in press.Google Scholar
77. Taylor, W., Tan, T. Y., and Gösele, U., Appl. Phys. Lett. 62, 3336 (1993).Google Scholar
78. Simon, L., Kubier, L., Bischoff, J. L., Belmont, D., Faure, J., Claverie, A., and Balladore, J. L., Phys. Rev. B54, 10559 (1996).Google Scholar
79. Werner, P., Eichler, S., Mariani, G., Kögler, R., and Skorupa, W., Appl. Phys. Lett. 70, 252 (1997).Google Scholar
80. Conrad, D., private communication.Google Scholar
81. Cowern, N. E., Appl. Phys. Lett. 64, 2646 (1994).Google Scholar
82. Habu, R., Iwasaki, T., Harada, H., and Tomiura, A., Jpn. J. Appl. Phys. 33, 1234 (1994).Google Scholar
83. Voronkov, V. V., J. Cryst. Growth 59, 625 (1982).Google Scholar
84. von Ammon, W., Dornberger, E., Oelkrug, H., and Weidner, H., J. Cryst. Growth 151, 273 (1995).Google Scholar
85. Brown, R. A., Maraudas, D., and Sinno, T., J. Cryst. Growth 137, 12 (1994).Google Scholar
86. Wijaranakula, W., J. Elecchem. Soc. 139, 604 (1992).Google Scholar
87. Sveinbjörnsson, E. Ö., Engström, O. and Södervall, U., J. Appl. Phys. 73, 7311 (1993).Google Scholar
88. Joshi, S. M., Gösele, U. M., and Tan, T. Y., J. Appl. Phys. 77, 3858 (1995).Google Scholar
89. Gafiteanu, R., Gösele, U., and Tan, T. Y., in Defect and Impurity Engineered Semiconductors and Devices, eds. Ashok, S., Akasaki, I, Chevallier, J., Johnson, N. M., and Sopori, B. L., Mater. Res. Soc. Proc. 378 (Mater. Res. Soc., Pittsburgh, PA, 1995) p. 297.Google Scholar
90. Narayanan, S., Wenham, S. R., and Green, M. A., IEEE Trans. Electron Dev. ED–37, 382 (1990).Google Scholar
91. Hartiti, B., Slaoui, A., Muller, J. C., and Siffert, P., Appl. Phys. Lett. 63, 1249 (1993).Google Scholar
92. Sana, P., Rohatgi, A., Kalejs, J. P., and Bell, R. O., Appl. Phys. Lett. 64, 97 (1994).Google Scholar
93. Tan, T. Y., Gardner, E. E., and Tice, W. K., Appl. Phys. Lett. 30, 175 (1977).Google Scholar
94. Schröter, W., Seibt, M., Gilles, D., Ch. 11 of “Electronic Structure and Properties of Semiconductors”, Vol. 4 of “Materials Science and Technology: A Comprehensive Treatment” eds. Cahn, R. W., Haasen, P., and Kramer, E. J., Vol. 4 ed W. Schröter (1991), p. 576.Google Scholar
95. Bruel, M., Electron. Lett. 31, 1201 (1995).Google Scholar
96. Tong, Q.-Y., Gutjahr, K., Hopfe, S., Gösele, U., and Lee, T.-H., Appl. Phys. Lett. 70, 1390 (1997).Google Scholar
97. Auberton-Herve, A.J., Barge, T., Metral, F., Bruel, M., Aspar, B., Maleville, C., Moriceau, H., and Poumeyrol, T., Proc. of 2nd Int. Sym. Advanced Sci. Technol. Silicon Mater, p. 214 (1996).Google Scholar
98. Kim, Y., Massoud, H.Z., Gösele, U.M., and Fair, R.B., Electrochem. Soc. Proc. Vol. 91–4, 304 (1991).Google Scholar
99. Di Cioccio, L., Le Tiec, Y., Letértre, F., Jaussaud, C., and Bruel, M., Electron. Lett. 32, 1144 (1996).Google Scholar
100. Weldon, M.K., Marsico, V., Chabal, Y.J., Christman, S.B., Chaban, E.E., Jacobson, D.C., Sapjeta, J.B., Pinczuk, A., Dennis, B.S., Mills, A.P., Goodwin, C.A., and Hsieh, C.-M., Proc. 1996 IEEE Int. SOI Conf. 96CH35937, 150 (1996).Google Scholar