Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T13:41:52.112Z Has data issue: false hasContentIssue false

Plasmon-Enhanced Emission Rates from III-Nitride Quantum Wells Using Tunable Surface Plasmons

Published online by Cambridge University Press:  04 February 2011

J. Henson
Affiliation:
Department of Electrical and Computer Engineering and Photonics Center, Boston University
J. DiMaria
Affiliation:
Department of Electrical and Computer Engineering and Photonics Center, Boston University
E. Dimakis
Affiliation:
Department of Electrical and Computer Engineering and Photonics Center, Boston University
R. Li
Affiliation:
Department of Electrical and Computer Engineering and Photonics Center, Boston University
S. Minissale
Affiliation:
Department of Electrical and Computer Engineering and Photonics Center, Boston University
L. Dal Negro
Affiliation:
Department of Electrical and Computer Engineering and Photonics Center, Boston University
T. D. Moustakas
Affiliation:
Department of Electrical and Computer Engineering and Photonics Center, Boston University
R. Paiella
Affiliation:
Department of Electrical and Computer Engineering and Photonics Center, Boston University
Get access

Abstract

Two-dimensional arrays of silver nanocylinders fabricated by electron-beam lithography are used to demonstrate plasmon-enhanced near-green light emission from nitride semiconductor quantum wells. Large enhancements in peak photoluminescence intensity (up to a factor of over 3) are obtained, accompanied by a substantial reduction in recombination lifetime indicative of increased internal quantum efficiency. The measured enhancement factors exhibit a strong dependence on the nanoparticle dimensions, underscoring the importance of geometrical tuning for this application.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Okamoto, K., Niki, I., Shvartser, A., Narukawa, Y., Mukai, T., and Scherer, A., Nature Mater. 3, 601605 (2004).Google Scholar
2. Lu, Y. C., Chen, C. Y., Yeh, D. M., Huang, C. F., Tang, T. Y., Huang, J. J., and Yang, C. C., Appl. Phys. Lett. 90, 193103 (2007).Google Scholar
3. Kwon, M. K., Kim, J. Y., Kim, B. H., Park, I. K., Cho, C. Y., Byeon, C. C., and Park, S. J., Adv. Mater. 20, 12531257 (2008).Google Scholar
4. Henson, J., Heckel, J. C., Dimakis, E., Abell, J., Bhattacharyya, A., Chumanov, G., Moustakas, T. D., and Paiella, R., Appl. Phys. Lett. 95, 151109 (2009).Google Scholar
5. Sun, G., Khurgin, J. B., and Soref, R. A., Appl. Phys. Lett. 94, 101103 (2009).Google Scholar
6. Barnes, W. L., J. Mod. Opt. 45, 661699 (1998).Google Scholar
7. Lamprecht, B., Schider, G., Lechner, R. T., Ditlbacher, H., Krenn, J. R., Leitner, A., and Aussenegg, F. R., Phys. Rev. Lett. 84, 47214724 (2000).Google Scholar
8. Haynes, C. L., McFarland, A. D., Zhao, L. L., Van Duyne, R. P., Schatz, G. C., Gunnarsson, L., Prikulis, J., Kasemo, B., and Käll, M., J. Phys. Chem. B 107, 73377342 (2003).Google Scholar
9. Biteen, J. S., Sweatlock, L. A., Mertens, H., Lewis, N. S., Polman, A., and Atwater, H. A., J. Phys. Chem. C 111, 1337213377 (2007).Google Scholar
10. Henson, J., DiMaria, J., and Paiella, R., J. Appl. Phys. 106, 093111 (2009).Google Scholar
11. Henson, J., Dimakis, E., DiMaria, J., Li, R., Minissale, S., Dal Negro, L., Moustakas, T. D., and Paiella, R., Optics Express 18, 2132221329 (2010).Google Scholar
12. Choi, C. K., Kwon, Y. H., Little, B. D., Gainer, G. H., Song, J. J., Chang, Y. C., Keller, S., Mishra, U. K., and DenBaars, S. P., Phys. Rev. B 64, 245339 (2001).Google Scholar
13. Biteen, J. S., Sweatlock, L. A., Mertens, H., Lewis, N. S., Polman, A., and Atwater, H. A., J. Phys. Chem. C 111, 1337213377 (2007).Google Scholar
14. Kawakami, Y., Omae, K., Kaneta, A., Okamoto, K., Izumi, T., Saijou, S., Inoue, K., Narukawa, Y., Mukai, T., and Fujita, S., Phys. Status Solidi A 183, 4150 (2001).Google Scholar
15. Maier, S. A., Plasmonics: Fundamentals and Applications (Springer, 2007), Chap. 5.Google Scholar