Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T23:28:47.250Z Has data issue: false hasContentIssue false

Plasmon induced modifications of the Förster energy transfer in reconstituted peridinin-chlorophyll-protein photosynthetic complex

Published online by Cambridge University Press:  14 January 2011

Mikolaj K. Schmidt*
Affiliation:
Institute of Physics, Nicolaus Copernicus University, Torun, Poland.
Alexander O. Govorov
Affiliation:
Department of Physics and Astronomy, Ohio University, Athens, Ohio, U.S.A.
Sebastian Mackowski
Affiliation:
Institute of Physics, Nicolaus Copernicus University, Torun, Poland.
*
*corresponding author: Mikolaj Kajetan Schmidt, email: 210580@fizyka.umk.pl
Get access

Abstract

In this work we investigate theoretically the effects imposed by plasmon excitations in spherical metallic nanoparticles (MNPs) on the rate of energy transfer in peridinin-chlorophyll-protein (PCP) complex reconstituted with both chlorophyll a (Chl a) and chlorophyll b (Chl b). This light-harvesting complex is unique since it features efficient energy transfer both from higher-lying Chl b to lower-lying Chl a as well as in the opposite, less energy-favorable direction. The results of calculations show that the Förster energy transfer rate decreases with a MNP-PCP distance changing from 2 to 144nm, while the energy transfer from Chl a to Chl b remains less efficient at all distances. We conclude that plasmon excitations allow for controlling the energy transfer between Chls, as well as the excitation distribution between two spectrally distinguishable Chls within the reconstituted PCP complex.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mackowski, S., J. Phys.: Condens. Matter 22, 193102 (2010).Google Scholar
2. Anger, P., Bharadwaj, P. and Novotny, L., Phys. Rev. Lett. 96, 113002 (2006).Google Scholar
3. Mackowski, S., Wormke, S., Maier, A. J., Brotosudarmo, T.H., Harutyunyan, H., Hartschuh, A., Govorov, A.O., Scheer, H. and Brauchle, C., Nano Lett. 8, 558 (2008).Google Scholar
4. Carmeli, I., Lieberman, L., Kraversky, L., Fan, Z., Govorov, A.O., Markovich, G., and Richter, S., Nano Lett. 10 2010, 10 (6), 2069 (2010).Google Scholar
5. Nabiev, I., Rakovich, A., Sukhanova, A., Lukashev, E., Zagidullin, V., Pachenko, V., Rakovich, Y.P., Donegan, J.F., Rubin, A.B. and Govorov, A.O., Angew. Chemie Int. Ed. 49, 7217 (2010).Google Scholar
6. Reil, F., Hohenester, U., Krenn, J. R. and Leitner, A., Nano Lett. 8, 41284133 (2008).Google Scholar
7. Ray, K., Badugu, R. and Lakowicz, J.R., J. Am. Chem. Soc. 128, 8998 (2006).Google Scholar
8. Kleima, F. J., Hofmann, E., Gobets, B., van Stokkum, I.H., van Grondelle, R., Diederichs, K. and van Amerongen, H., Biophys J. 78, 344 (2000).Google Scholar
9. Polívka, T., Pascher, T. and Hiller, R.G., Biophys J. 94, 3198 (2008).Google Scholar
10. Wörmke, S., Mackowski, S., Brotosudarmo, T. H., Jung, C., Zumbusch, A., Ehrl, M., Scheer, H., Hofmann, E., Hiller, R.G. and Bräuchle, C., BBA-Bioenergetics 1767, 956 (2007).Google Scholar
11. Mackowski, S., Wormke, S., Brotosudarmo, T.H., Jung, C., Hiller, R.G., Scheer, H. and Brauchle, C., Biophys. J. 93, 32493258 (2007).Google Scholar
12. Brotosudarmo, T.H., Hofmann, E., Hiller, R.G., Wormke, S., Mackowski, S., Zumbusch, A., Brauchle, C. and Scheer, H., FEBS Lett. 580, 52575262 (2006).Google Scholar
13. Hofmann, E., Wrench, P. M., Sharples, F. P., Hiller, R. G., Welte, W. and Diederichs, K., Science 272, 5269 (1996).Google Scholar
14. Miller, D.J., Catmull, J., Puskeiler, R., Tweedale, H., Sharples, F.P. and Hiller, R.G., Photosynth. Res. 86, 229 (2005).Google Scholar
15. Johnson, P. B. and Christy, R. W., Phys. Rev. B 6, 4370 (1972).Google Scholar
16. Hernández-Martínez, P.L. and Govorov, A.O., Phys. Rev. B 78, 035314 (2008).Google Scholar
17. Ruppin, R., J. Chem. Phys. 76 (1982).Google Scholar
18. Förster, T., Ann. Physik 437, 55 (1948).Google Scholar
19. Schmidt, M.K. and Mackowski, S., Cent. Eur. J. Phys (submitted).Google Scholar
20. Jackson, J. D., Classical Electrodynamics, 2nd ed. (Wiley, NewYork, 1975).Google Scholar
21. Polívka, T., Pascher, T., Sundström, V. and Hiller, R. G., Photosynth. Res. 86, 217 (2005).Google Scholar