Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T23:36:14.751Z Has data issue: false hasContentIssue false

Plasma-Assisted Epitaxial Growth of Compound Semiconductors for Infrared Application

Published online by Cambridge University Press:  25 February 2011

K. Matsushita
Affiliation:
Department of Electronic Engineering, Tohoku University, Sendai 980, Japan
T. Hariu
Affiliation:
Department of Electronic Engineering, Tohoku University, Sendai 980, Japan
S. F. Fang
Affiliation:
Department of Electronic Engineering, Tohoku University, Sendai 980, Japan
K. Shida
Affiliation:
Department of Electronic Engineering, Tohoku University, Sendai 980, Japan
Q. Z. Gao
Affiliation:
Department of Electronic Engineering, Tohoku University, Sendai 980, Japan
Get access

Abstract

GaSb, InSb and InAs epitaxial layers with mirror surface were grown on GaSb, GaAs, InP, Si and sapphire substrates at relatively low temperatures by plasma-assisted epitaxy (PAE) in hydrogen plasma. Carrier concentrations and Hall mobilities of undoped PAE layers at room temperature are p=6×O16 cm−3; μp=750cm2/Vs, n=1×1016cm−3; μn=39,000cm2/Vs and n=7×1017 cm−3; μn=21,000cm2/Vs for GaSb on GaAs, InSb on GaAs and InAs on InP, respectively. As the first application of PAE layers to optoelectronic devices, p-GaSb/n-GaAs heterojunction photodiodes have been demonstrated to result in remarkable reduction of dark current with photoresponse in the wavelength region between 0.85 and 1.7μm for the light incident from GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Takenaka, K., Hariu, T. and Shibata, Y., Jpn. J. Appl. Phys. Suppl. 19–2, 183 (1980).Google Scholar
2. Hariu, T., Takenaka, K., Shibuya, S., Komatsu, Y. and Shibata, Y., Thin Solid Films 80, 235 (1981).Google Scholar
3. Hariu, T., Matsushita, K., Komatsu, Y., Shibuya, S., Igarashi, S. and Shibata, Y., in Gallium Arsenide and Related Compounds, edited by Stillman, G. E., Inst. Phys. Ser. 65, 141 (1982).Google Scholar
4. Sato, Y., Matsushita, K., Hariu, T. and Shibata, Y., Appl. Phys. Lett. 44, 592 (1984).Google Scholar
5. Matsushita, K., Sato, T., Sato, Y., Sugiyama, Y., Hariu, T. and Shibata, Y., IEEE Trans. Electron Devices ED-31, 1092 (1984).Google Scholar
6. Hariu, T., Fang, S. F., Shida, K., Matsushita, K. and Gao, Q. Z., in Gallium Arsenide and Related Compounds, Inst. Phys. Ser. (1986) (to be published).Google Scholar
7. Yano, M., Suzuki, Y., Ishii, T., Matsushima, Y. and Kimata, M., Jpn. J. Appl. Phys. 17, 2091 (1978).Google Scholar
8. Bernstein, L. and Beals, R. J., J. Appl. Phys. 32, Letter to Editor, 122 (1961).Google Scholar
9. Miggitt, B. T., Parker, E. H., and King, R. M., Appl. Phys. Lett. 33, 528 (1978).Google Scholar
10. Yano, M., Takase, T. and Kimata, M., phys. stat. sol.(a) 54, 707 (1979).Google Scholar
11. Kubiak, R. A. A., Parker, E. H. C., Newstead, S. and Harris, J. J., Appl. Phys. A (Germany) 35, 61 (1984).Google Scholar