Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T13:28:32.606Z Has data issue: false hasContentIssue false

Plasma Generation

Published online by Cambridge University Press:  15 February 2011

E. Pfender*
Affiliation:
University of Minnesota, Dept. of Mech. Eng., 111 Church St. S.E., Minneapolis, Minnesota, 55455
Get access

Extract

In general, a plasma consists of a mixture of electrons, ions,and neutral species. Although there are free electric charges in a plasma, negative and positive charges compensate each other, i.e. overall a plasma is electrically neutral, a property which is known as quasi-neutrality. In contrast to an ordinary gas, the free electric charges in a plasma give rise to high electrical conductivities which may even surpass those of metals. A hydrogen plasma, for example, at atmospheric pressure heated to temperatures of 106 K, has the same electrical conductivity as copper at room temperature. As the plasma temperature increases, the electrical conductivity increases beyond that of copper. Plasma temperatures of the order of 106 K and above are typical for thermonuclear fusion experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Finkelnburg, W., Maecker, H., “Electrische Bögen und thermisches Plasma” Encyclopedia of Physics, Vol. XXII, 254 (1956), Springer-Verlag. Germany.Google Scholar
2. Griem, H.R., Plasma Spectroscopy, McGraw-Hill Book Company, New York, 1964.Google Scholar
3. Huddlestone, R.H. and Leonard, S.L., Editors Plasma Diagnostic Techniques, Academic Press, New York and London, 1965.Google Scholar
4. Lochte-Holtgreven, W., Editor Plasma Diagnostics, North-Holland Publishing Company, Amsterdam, 1968.Google Scholar
5. Drawin, H.W., High Temperature-High Pressures, Vol. 2, 359 (1970).Google Scholar
6. Mitchner, M. and Kruger, C.H. Jr., Partially Ionized Gases, John Wiley and Sons., New York 973.Google Scholar
7. Mäcker, H., Z. Physik, 141, 198 (1955).Google Scholar
8. Pfender, E., “Electric Arcs and Arc Gas Heaters”, Ch. 5 in Gaseous Electronics, Vol. 1, 291 (1978), ed. Hirsh, M.N. and Oskam, H.J., Academic Press, New York, 1978.Google Scholar
9. Edels, H., “Properties of the High Pressure Ultra High Current Arc”, Proc. of the Eleventh Internat. Conf. on Phen. in Ionized Gases, Invited Papers, 9, Prague Czechoslovakia, Czechoslovak Academy of Sciences, Institute of Physics, 18040 Prague 8, Na Slovance 2, CSSR, 1973.Google Scholar
10. Schoenherr, O., Elektrotechn. Z. 30, 365 (1909).Google Scholar
11. Gerdien, H. and Lotz, A., Wiss. Veröff, Siemens-Konz. 2, 489 (1922).Google Scholar
12. Ecker, G., “Electrode Components of the Arc Discharge”, Erg. D. ExaktenNaturwiss., Bd.33, 1 (1961), Springer-Verlag, Germany.Google Scholar
13. Hsu, K.C., Etemadi, K., and Pfender, E., J. Appl. Phys. 54, 1293 (1983).Google Scholar
14. Eberhart, R.C. and Seban, R.A., Int. J. Heat Mass Transfer, 9, 939 (1966).Google Scholar
15. Eckert, H.U., High Temp. Sci., Vol. 6, No. 2, 99 (1974).Google Scholar
16. John, R.R. and Bade, W.L., “Recent Advances in Electric Arc Plasma Generation Technology”, ARS Journal, No. 31, 4 (1961).Google Scholar
17. Eschenbach, R.C. et al. , “Performance Improvement of Air Heaters for Aerodynamic Wind Tunnels”, Air Force Flight Dynamics Lab. Rept. 65–87, Linde Company, Division of Union Carbide, 1965.Google Scholar
18. Boldman, D.R., Shepard, C.W., and Fakan, J.C., “Electrode Configurations for a Wind-Tunnel Heater Incorporating the Magnetically Spun Electric Arc”, NASA TN D-1222, 1962.Google Scholar
19. Cann, G.L. et al. , “Thermal Arc Jet Research”, Aeronautical Systems Division, Technical Documentary Report No. ASD-TDR-63–632, 1963.Google Scholar
20. Shepard, C.E., Watson, V.R., and Stine, H.A., “Evaluation of a Constricted-Arc Supersonic Jet”, NASA TN D-2066, 1964.Google Scholar
21. Cann, G.L., Buhler, R.D., Harder, R.L., and Morre, R.A., “Basic Research on Gas Flows Through Electric Arcs-Hot Gas Containment Limits”, ARL 64–69, 1964.Google Scholar
22. Marlotte, G.L., Cann, G.L. and Harder, R.L., “A Study of Interactions Between Eletric Arcs and Gas Flows”, ARL Report 68–0049, 1968.Google Scholar
23. AGARDograph 84, Part 1 and 2, 1964.Google Scholar
24. Eschenbach, R.C. et al. , “Performance Improvement of Air Heaters for Aerodynamic Wind Tunnels”, Air Force Flight Dynamics Lab. Rept. 65–87, Linde Company, Division of Union, Carbide, 1965.Google Scholar
25. Watson, V.R., “Comparison of Detailed Numerical Solutions with Simplified Theories of the Constricted-Arc Plasma Generator”, Proc. of the 1965 Heat Transfer and Fluid Mechanics Institute, Stanford Univ. Press, 24 (1965).Google Scholar
26. Vorreiter, J.W. and Shepard, C.E., “Performance Characteristics of the Constricted-Arc Supersonic Jet”, Proc. 1965 Heat Transfer and Fluid Mechanics Institute, Stanford Univ. Press, 42 (1965).Google Scholar
27. Shepard, C.E., Vorreiter, J.W., Stine, H.A. and Winovich, W., “A Study of Artificial Meteors as Ablators”, NASA TN D-3740, 1967.Google Scholar
28. Shepard, C.E., Ketner, D.M. and Vorreiter, J.W., “A High Enthalpy Plasma Generator for Entry Heating Simulation”, NASA TN D-4583, 1968.Google Scholar
29. Marlotte, G.L., Cann, G.L., and Harder, R.L., “A Study of Interactions Between Electric Arcs and Gas Flows”, ARL Report 68–0049, 1968.Google Scholar
30. Beachler, J.C., “Design and Shakedown Operation of the Air Force Flight Dynamics Laboratory's 2 Ft (4 Megawatt) Electro-Gasdynamic Facility”, Air Force Flight Dynamics Laboratory Rept. 68–3, Wright-Patterson Air Force Base, Ohio 1968.Google Scholar
31. Smith, R.T. and Folek, J.L., “Operating Characteristics of a Multi-Megawatt Arc Heater Used with the AFFDL Fifty Megawatt Facility”, Proc. of the 15th Annual Tech. Meeting, Inst. of Environ. Sciences, 281, 1969.Google Scholar
32. Richter, R., “Ultra-High Pressure Arc Heater Studies”, AECD TR 69–180, Arnold Engineering Develop. Center, Arnold Air Force Station, Tennessee, 1969.Google Scholar
33. Harder, R.L. and Cann, G.L., AIAA Journal, Vol. 8, No. 12, 2220 (1970).Google Scholar
34. Richter, R., “Ultra-High Pressure Arc Heater Studies, (Phase III)”, AECD TR 70–106, Arnold Engineering Develop. Center, Arnold Air Force Station, Tennessee, 1970.Google Scholar
35. Shepard, C.E., AIAA Journal, Vol. 10, No. 2, 117 (1972).Google Scholar
36. Cann, G.L., “An Experimental Investigatiaon of a Vortex Stabilized Arc in an Axial Magnetic Field”, ARL 73-0043, 1973.Google Scholar
37. Painter, J.H., “High-Pressure Arc Heater Electrode Heat Transfer Study”, AIAA Paper N. 74–731, AIAA/ASME Thermophysics and Heat Transfer Conf., 1974.Google Scholar
38. Gross, B., Grycz, G. and Miklossy, K. Plasma Technnology, Iliffe, London & SNTL, Prague, 1969.Google Scholar
39. Landt, U., “Entwicklungen auf dem Gebiet der anorganischen Plasmachemic Teil 1; Reaktionene im Plasmastrahl”, Chemie Ing.-Techn. 42, Jahrg. Nr. 9/10, 617 (1970).Google Scholar
40. Sayce, I.G., “Plasma Processes in Extractive Metallurgy”, Advan. Extr. Met. Refining, Proc. Int. Symp. 241, 1971.Google Scholar
41. Thorpe, M.L., “High Temperature Technology and its Relationship to Mineral Exploitation”, Advan. Extr. Met. Refining, Proc. Int. Symp. 275, 1971.Google Scholar
42. Anshakov, A.S., Zhukov, M.F., and Timoshevsky, A.N., “Arc Dynamics in Arc Heater Tunnel”, Proc. of the Eleventh Int. Conf. on Phen. in Ionized Gases, Prague, Czechoslovakia, Contributed Papers, 225, Czechoslovak Academy of Sciences, Inst. of Phys., 18040 Prague 8, Na Slovance 2, CSSR, 1973.Google Scholar
43. Shashkov, A.G. and Yas'ko, O.I., IEEE Transaction on Plasma Science, Vol. PS–1, No. 3, 21 (1973).Google Scholar
44. Shaboltas, A.S. and Yas'ko, O.I., J. Eng. Phys., Vol.19/6, 1529 (1974).Google Scholar
45. Sharakhovskii, L.I., J. Eng. Phys., Vol.20/2, 222 (1974).Google Scholar
46. Boffa, C. and Pfender, E., “Enthalpy Probe and Spectrometric Studies in an Argon Plasma Jet”, HTL TR No. 73, University of Minnesota, 1968.Google Scholar
47. Grey, J. and Jacobs, P.F., AIAA Journal, Vol. 5, No. 1, 84 (1967).Google Scholar