Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-02-05T14:44:29.732Z Has data issue: false hasContentIssue false

Picosecond Laser Induced Melting: The Dielectric Function of Molten Silicon and Superheating in the Liquid Phase

Published online by Cambridge University Press:  26 February 2011

P. M. Fauchet
Affiliation:
Princeton Laboratory for Ultrafast Spectroscopy (PLUS), Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
K. D. Li
Affiliation:
Princeton Laboratory for Ultrafast Spectroscopy (PLUS), Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
Get access

Abstract

The complex dielectric function of molten silicon produced after picosecond illumination is found to be well described by a Drude model from 1.1 eV to 3.5 eV. Close to the melting temperature, we obtain ωp = 2.50 1016rad/s and τ = 212 10−18s. Transiently, the liquid temperature can exceed the melting temperature or even the boiling temperature Tb. We observe this transient heating and model it with a relatively simple computer code which includes superheating of the liquid above Tb. These measurements are possible thanks to a novel pump and probe technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fauchet, P.M. and Siegman, A.E., Appl. Phys. Lett. 43, 1043 (1983).Google Scholar
2. Fauchet, P.M. and Siegman, A.E., Mat. Res. Soc. Symp. Proc. 23, 63 (1984).Google Scholar
3. Bloembergen, N., Mat. Res. Soc. Symp. Proc. 51, 3 (1986).Google Scholar
4. Williamson, S., Mourou, G. and Lee, J.C., Mat. Res. Soc. Symp. Proc. 35, 87 (1985).CrossRefGoogle Scholar
5. Liu, J.M., Kurz, H. and Bloembergen, N., Appl. Phys. Lett. 41, 643 (1982).Google Scholar
6. Fabricius, N., Hermes, P., Linde, D. von der, Pospieszczyk, A. and Stritzker, B., Solid State Commun. 58, 239 (1986).Google Scholar
7. Linde, D. von der, Fabricius, N., Danielzik, B. and Bonkhofer, T., Mat. Res. Soc. Symp. Proc. 74, 103 (1987).Google Scholar
8. Fauchet, P.M. and Nighan, W.L. Jr., Appl. Phys. Lett. 48, 721 (1986).Google Scholar
9. Li, K.D. and Fauchet, P.M., Solid State Commun. 61, 207 (1987).Google Scholar
10. Li, K.D. and Fauchet, P.M., Appl. Phys. Lett. 51, 1726 (1987).Google Scholar
11. Fauchet, P.M. and Li, K.D., J. Non-Cryst. Solids, in press.Google Scholar
12. Bambha, N.K., Nighan, W.L. Jr., Campbell, I.H., Fauchet, P.M. and Johnson, N.M., J. Appl. Phys., March 15, 1988, in press.Google Scholar
13. Shvarev, K.M., Baum, B.A. and Gel'd, P.V., Soy. Phys. Solid State 16, 2111 (1975).Google Scholar
14. Gusakov, G.M., Komarnitskii, A.A. and Sarkisyan, S.S., Soy. Tech. Phys. Lett. 12, 74 (1986).Google Scholar
15. Jellison, G.E. Jr. and Lowndes, D.H., Appl. Phys. Lett. 47, 718 (1985).CrossRefGoogle Scholar
16. Jellison, G.E. Jr. and Lowndes, D.H., Appl. Phys. Lett. 51, 352 (1987).CrossRefGoogle Scholar
17. Lampert, M.O., Koebel, J.M. and Siffert, P., J. Appl. Phys. 52, 4975 (1981).Google Scholar
18. Wood, R.F. and Giles, G.E., Phys. Rev. B23, 2923 (1981).Google Scholar
19. Baeri, P., Campisano, S.U., Foti, G. and Rimini, E., J. Appl. Phys. 50, 788 (1979).Google Scholar
20. Ujihara, K., J. Appl. Phys. 43, 2376 (1972).CrossRefGoogle Scholar
21. Spaepen, F., in Ultrafast Phenomena V, Fleming, G.R. and Siegman, A.E. editors, Springer-Verlag, 1986, p. 174.Google Scholar