Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T13:33:45.776Z Has data issue: false hasContentIssue false

Photosynthetic Reaction Center Immobilization through Carboxylic Acid Terminated\Cytochrome C Linker for Applications in Photoprotein-based Bio-photovoltaic Devices

Published online by Cambridge University Press:  29 May 2013

Houman Yaghoubi*
Affiliation:
Bio/Organic Electronics Group, Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, United States
Daniel Jun
Affiliation:
Department of Microbiology and Immunology, University of British Columbia, Vancouver BC V6T 1Z3, Canada
J. Thomas Beatty
Affiliation:
Department of Microbiology and Immunology, University of British Columbia, Vancouver BC V6T 1Z3, Canada
Arash Takshi
Affiliation:
Bio/Organic Electronics Group, Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, United States
Get access

Abstract

Bacterial photosynthetic reaction centers (RCs) are promising materials for solar energy harvesting, due to their high internal quantum efficiency. However, applications of RCs in bio-photovoltaic devices so far show relatively low external power conversion efficiency, mainly due to low efficiency of the charge transfer to the electrode. Preferential orientation of RCs on an electrode’s surface can enhance the charge transfer rate to some extent. Yet, the results of direct coupling of RCs to an Au electrode, through cysteine residues from the H-subunit, revealed that direct electron transfer is not efficient. This work focuses on a different approach to achieve high charge transfer rate between an Au electrode and RC protein complexes by employing cytochrome c (Cyt c)\carboxylic acid-terminated linker molecules. This approach preferentially orients RCs with the primary donor site to the electrode. Furthermore, Cyt c can be considered as a conductive linker, while the charge transfer mechanism through carboxylic acid-terminated linker molecules is dominated by tunneling. The photochronoamperometric results for a two electrode cell setup indicated a 156 nA.cm-2 cathodic photocurrent density; the photocurrent was measured in an electrochemical cell with ubiquinone-10 (Q2) in the electrolyte. Negligible photocurrents were observed in the case of coupled RCs to the Au via cysteine residues on H-subunit, with only Cyt c in the electrolyte. These findings contribute to the design of highly efficient bio-photovoltaic devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blankenship, R.E., Tiede, D.M., Barber, J., Brudvig, G.W., Fleming, G., Ghirardi, M., Gunner, M.R., Junge, W., Kramer, D.M., Melis, A., Moore, T.A., Moser, C.C., Nocera, D.G., Nozik, A.J., Ort, D.R., Parson, W.W., Prince, R.C., Sayre, R.T., et al. ., Science, 332(6031), 805 (2011).CrossRefGoogle Scholar
Giustini, M., Autullo, M., Mennuni, M., Palazzo, G., Mallardi, A., Sensor Actuat. B-Chem., 163(1), 69 (2012).CrossRefGoogle Scholar
Reiss, B.D., Hanson, D.K., and Firestone, M.A., Biotechnol. Progr., 23(4), 985 (2007).CrossRefGoogle Scholar
Tan, S.C., Crouch, L.I., Mahajan, S., Jones, M.R., Welland, M.E., ACS Nano, 6(10), 9103 (2012).CrossRefGoogle Scholar
Lebedev, N., Trammell, S.A., Tsoi, S., Spano, A., Kim, J.H., Xu, J., Twigg, M.E., Schnur, J.M., Langmuir, 24(16), 8871 (2008).CrossRefGoogle Scholar
den Hollander, M.-J., Magis, J.G., Fuchsenberger, P., Aartsma, T.J., Jones, M.R., Frese, R.N., Langmuir, 27(16), 10282 (2011).CrossRefGoogle Scholar
Tan, S.C., Crouch, L.I., Jones, M.R., Welland, M., Angew. Chem. Int. Edit., 51(27), 6667 (2012).CrossRefGoogle Scholar
Yaghoubi, H., Li, Z., Jun, D., Saer, R., Slota, J.E., Beerbom, M., Schlaf, R., Madden, J.D., Beatty, J.T., Takshi, A., J. Phys. Chem. C, 116, 24868 (2012).CrossRefGoogle Scholar
Kondo, M., Iida, K., Dewa, T., Tanaka, H., Ogawa, T., Nagashima, S., Nagashima, K.V.P., Shimada, K., Hashimoto, H., Gardiner, A.T., Cogdell, R.J., Nango, M., Biomacromolecules, 13(2), 432 (2012).CrossRefGoogle Scholar
Lu, Y., Yuan, M., Liu, Y., Tu, B., Xu, C., Liu, B., Zhao, D., Kong, J., Langmuir, 21, 4071 (2005).CrossRefGoogle Scholar
Trammell, S.A., Griva, I., Spano, A., Tsoi, S., Tender, L.M., Schnur, J., Lebedev, N., J. Phys. Chem. C, 111(45), 17122 (2007).CrossRefGoogle Scholar
Mahmoudzadeh, A., Saer, R., Jun, D., Mirvakili, S.M., Takshi, A., Iranpour, B., Ouellet, E., Lagally, E.T., Madden, J.D.W., Beatty, J.T., Smart Mater. Struct., 20(9), 094019 (2011).CrossRefGoogle Scholar
Yaghoubi, H., Takshi, A., Jun, D., Saer, R., Madden, J.D., Beatty, J.T., in MRS Online Proc. Libr. 2012, 1414, mrsf11-1414-hh07-03 doi:10.1557/opl.2012.735.Google Scholar
Kondo, M., Nakamura, Y., Fujii, K., Nagata, M., Suemori, Y., Dewa, T., Iida, K., Gardiner, A.T., Cogdell, R.J., Nango, M., Biomacromolecules, 8(8), 2457 (2007).CrossRefGoogle Scholar
Trammell, S.A., Wang, L., Zullo, J.M., Shashidhar, R., Lebedev, N., Biosens. Bioelectron., 19(12), 1649 (2004).CrossRefGoogle Scholar
Magis, G.J., den Hollander, M.-J., Onderwaater, W.G., Olsen, J.D., Hunter, C.N., Aartsma, T.J., Frese, R.N., BBA-Biomembranes, 1798(3), 637 (2010).CrossRefGoogle Scholar
Magis, G.J., Olsen, J.D., Reynolds, N.P., Leggett, G.J., Hunter, C.N., Aartsma, T.J., Frese, R.N., Photochem. Photobiol., 87(5), 1050 (2011).CrossRefGoogle Scholar
Willner, I., Katz, E., Angew. Chem. Int. Edit., 39(7), 1180 (2000).3.0.CO;2-E>CrossRefGoogle Scholar
Lebedev, N., Trammell, S.A., Spano, A., Lukashev, E., Griva, I., Schnur, J., JACS, 128(37), 12044 (2006).CrossRefGoogle Scholar
Hildebrandt, P., Murgida, D.H., Bioelectrochemistry, 55(1-2), 139 (2002).CrossRefGoogle Scholar
Bain, C.D., Troughton, E.B., Tao, Y.T., Evall, J., Whitesides, G.M., Nuzzo, R.G., JACS, 111(1), 321 (1989).CrossRefGoogle Scholar
Song, S., Clark, R.A., Bowden, E.F., Tarlov, M.J., J. Phys. Chem., 97(24), 6564 (1993).CrossRefGoogle Scholar
Adir, N., Axelrod, H.L., Beroza, P., Isaacson, R.A., Rongey, S.H., Okamura, M.Y., Feher, G., Biochemistry, 35, 2535 (1996).CrossRefGoogle Scholar
Axelrod, H.L., Abresch, E.C., Okamura, M.Y., Yeh, A.P., Rees, D.C., Feher, G., J. Mol. Biol., 319(2), 501 (2002).CrossRefGoogle Scholar