Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T13:42:31.465Z Has data issue: false hasContentIssue false

Photopolymerization and Metalization for Fabricating Functional Devices and Metamaterials

Published online by Cambridge University Press:  01 February 2011

Satoshi Kawata
Affiliation:
skawata@skawata.com, RIKEN, Nanophotonics Lab., 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan, 048-467-9340, 048-467-9170
Takuo Tanaka
Affiliation:
t-tanaka@riken.jp, RIKEN, Nanophotonics Lab., 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
Nobuyuki Takeyasu
Affiliation:
ntakeyasu@riken.jp, RIKEN, Nanophotonics Lab., 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
Sana Nakanishi
Affiliation:
sana@ap.eng.osaka-u.ac.jp, Osaka University, Applied Physics, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
Get access

Abstract

We present three-dimensional micro/nano-fabrication techniques to create new photonic and functional devices. We have demonstrated two-photon-induced photopolymerization for fabricating 3D micro/nano-structures [1, 2]. In this method, arbitrary three-dimensional polymer structures are fabricated by scanning tightly focused infrared femto-second laser in three dimensions. Recently, we extended this technique to fabricate functional micro devices including photonic band-gap crystals [3] and movable micro-springs. The shrinkage of polymer during polymerization is utilized to reduce the structure size beyond the diffraction limit of light [4]. A micro-lens array with 2500 lenses is used to produce a mass of structures in parallel. By using this micro-lens array system, we fabricated 800 micro-springs and micro-cubic structures by single laser scanning [5]. In this presentation, metalization of fabricated polymer structures will also be described. We coat metal on the surface of polymer by electroless metal plating, but not on the glass substrate [6]. Hydrophobic coating was pre-made on the glass substrates and polymer surface is modified with Sn2+-ions. With this method micro-coil array is metalized [7]. Micro-coil array exhibits negative refraction due to the excitation of magnetic field through coils. We would like to show our design of the structure [8]. In the end, we talk about our newly invented diffraction-free imaging with nano metal rod array [9].

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kawata, S., Sun, H.-B., Tanaka, T. and Takada, K., Nature 412, 697 (2001).Google Scholar
2. Maruo, S., Nakamura, O. and Kawata, S., Opt. Lett. 22, 132 (1997).Google Scholar
3. Kaneko, K., Sun, H.B., Duan, X. M., Kawata, S., Appl. Phys. Lett. 83, 2091 (2003).Google Scholar
4. Takada, K., Sun, H-B. and Kawata, S., Adv. Mater. (submitted).Google Scholar
5. Kato, J., Takeyasu, N., Adachi, Y., Sun, H-B. and Kawata, S., Appl. Phys. Lett. 86, 044102 (2005).Google Scholar
6. Takeyasu, N., Tanaka, T. and Kawata, S., Jpn. J. Appl. Phys. Part2, 44, L1134 (2005).Google Scholar
7. Florian, F., Takeyasu, N., Tanaka, T., Chiyoda, K., Ishikawa, A. and Kawata, S., Appl. Phys. Lett. 88, 083110 (2006).Google Scholar
8. Takeyasu, N., Florian, F., Tanaka, T., Ishikawa, A., Chiyoda, K. and Kawata, S., J. Am. Chem. Soc. (Submitted).Google Scholar
9. Ishikawa, A., Tanaka, T. and Kawata, S., Phys. Rev. Lett. 95, 237401 (2005).Google Scholar
10. Ono, A., Kato, J. and Kawata, S., Phys. Rev. Lett. 95, 267407 (2005).Google Scholar
11. Sun, H.-B., Matsuo, S., Misawa, H., Appl. Phys. Lett. 76, 786 (1999).Google Scholar
12. Lee, W., Pruzinsky, S. A., and Braun, P. V., Adv. Mater. 14, 271 (2002).Google Scholar
13. Cumpston, B. H., Ananthavel, S. P., Barlow, S., Dyer, D. L., Ehrlich, J. E., Erskine, L. L., Heikal, A. A., Kuebler, S. M., Lee, I.-Y. Sandy, McCord-Maughon, D., Qin, Jinqui, Marder, S. R., and Perry, J. W., NATURE 398, 51 (1999).Google Scholar
14 Deubel, M., Freymann, G. V., Wegener, M., Pereira, S., Busch, K, and Soukoulis, C. M., Nature Mater. 3, 444 (2004).Google Scholar
16. DeVoe, R. J., Kalweit, H., Leatherdale, C. A., and Williams, T. R., Proc. SPIE 4797, 310 (2002).Google Scholar
15. Sun, H.-B., Suwa, T., Takada, K., Zaccaria, R.P., Kim, M.S., Lee, K.S., Kawata, S., Appl. Phys. Lett. 85, 3708 (2004).Google Scholar
17. Sun, H.-B., Takada, K., Kawata, S., Appl. Phys. Lett. 79, 3173 (2001).Google Scholar
18. Farrer, R. A., LaFratta, C. N., Li, L., Praino, J., Naughton, M. J., Saleh, B. E. A., Teich, M. C., and Fourkas, J. T., J. Am. Chem. Soc. 128, 1796 (2006).Google Scholar
19. Stellacci, F., Bauer, C. A., Meyer-Friedrichsen, T., Wenseleers, W., Alain, V., Kuebler, S. M., Ond, S. J. K., Zhang, Y., Marder, S. R., and Perry, J. W., Adv. Mater. 14, 194 (2002).Google Scholar
20. Tanaka, T., Ishikawa, A., and Kawata, S., Appl. Phys. Lett. 88, 81107 (2006).Google Scholar