Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T13:32:31.282Z Has data issue: false hasContentIssue false

Photonic bandgap effect in Periodic Porous Silicon Planar Waveguides

Published online by Cambridge University Press:  17 March 2011

P. Ferrand
Affiliation:
Laboratoire de Spectrométrie Physique, Université Joseph Fourier Grenoble 1, CNRS UMR 5588, BP 87, F-38402 Saint Martin d'Hères, France
R. Romestain
Affiliation:
Laboratoire de Spectrométrie Physique, Université Joseph Fourier Grenoble 1, CNRS UMR 5588, BP 87, F-38402 Saint Martin d'Hères, France
Get access

Abstract

We have obtained a porous silicon optical planar waveguide, with a submicronic periodic modulation of the optical index along one direction of plane, using a holographic process. Near-infrared continuous transmission spectra of guided light across not less than 3000 periods show several strong stopbands, with a decrease of intensity by two orders of magnitude. By means of the coupled-mode theory, we were able to deduce from the spectra a realistic map of the optical index at a microscopic scale, demonstrating a strong photo-induced index contrast (Δn = 0.5) at a submicronic scale.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Vincent, G., Appl. Phys. Lett. 64, 2367 (1994).Google Scholar
3. Pellegrini, V., Tredicucci, A., Mazzoleni, C., and Pavesi, L., Phys. Rev. B 52, R14328 (1995).Google Scholar
4. Setzu, S., Létant, S., Solsona, P., Romestain, R., and Vial, J. C., Eur. Phys. J. Appl. Phys 7, 59 (1999).Google Scholar
5. Setzu, S., Lérondel, G., and Romestain, R., J. Appl. Phys. 84, 3129 (1998).Google Scholar
6. Loni, A., Canham, L. T., Berger, M.G., Arens-Fischer, R., Münder, H., Lüth, H., Arrand, H. F., and Benson, T. M., Thin Solid Films 276, 143 (1996).Google Scholar
7. Arrand, H. F., Benson, T. M., Sewell, P., Loni, A., Bozeat, R. J., Arens-Fischer, R., Krüger, M., Thönissen, M., and Lüth, H., IEEE J. Sel. Top. Quantum Electron. 4, 975 (1998).Google Scholar
8. Yablonovitch, E., Phys. Rev. Lett. 58, 2059 (1987).Google Scholar
9. John, S., Phys. Rev. Lett. 58, 2486 (1987).Google Scholar
10. Mekis, A., Chen, J. C., Kurland, I., Fan, S., Villeneuve, P.R., and Joannopoulos, J. D., Phys. Rev. Lett. 77, 3787 (1996).Google Scholar
11. Lérondel, G., Romestain, R., Vial, J. C., and nissen, M. Thö, Appl. Phys. Lett. 71, 196 (1997).Google Scholar
12. Vorozov, N., Dolgyi, L., Yakovtseva, V., Bondarenko, V., Balucani, M., Lamedica, G., Ferrari, A., Vitrant, G., Broquin, J. E., Benson, T. M., Arrand, H. F., and Sewell, P., Electron. Lett. 36, 722 (2000).Google Scholar
13. Ferrand, P. and Romestain, R., Appl. Phys. Lett. 77, 3535 (2000).Google Scholar
14. Vincent, G., Leblanc, L., Sagnes, I., Badoz, P. A., and Halimaoui, A., J. Lumin. 57, 217 (1993).Google Scholar
15. Lérondel, G., Romestai, R., and Barret, S., J. Appl. Phys. 81, 6171 (1997).Google Scholar
16. Yariv, A., IEEE J. Quantum Electron. QE–9, 919 (1973); H. Stoll and A. Yariv, Opt. Commun. 8, 5 (1973); A. Yariv, Quantum electronic (Wiley, New York, 1988).Google Scholar
17. Mihalcescu, I., Lérondel, G., and Romestain, R., Thin Solid Films 297, 245 (1997).Google Scholar
18. Polisski, G., Adrianov, A. V., Kovalev, D., and Koch, F., Braz. J. Phys. 26, 186 (1996).Google Scholar
19. Zoorob, M. E., Charlton, M. D. B., Parker, G. J., Baumberg, J. J., and Netti, M. C., Nature 404, 740 (2000).Google Scholar