Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T15:16:07.923Z Has data issue: false hasContentIssue false

Photonic and plasmonic crystal based enhancement of solar cells- overcoming the Lambertian classical 4n2 limit

Published online by Cambridge University Press:  07 June 2012

Rana Biswas
Affiliation:
Dept. of Physics and Astronomy and Ames Laboratory, Iowa State University, Ames, Iowa 50011 Microelectronics Research Center and Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011
Chun Xu
Affiliation:
Dept. of Physics and Astronomy and Ames Laboratory, Iowa State University, Ames, Iowa 50011
Sambit Pattnaik
Affiliation:
Microelectronics Research Center and Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011
Joydeep Bhattacharya
Affiliation:
Microelectronics Research Center and Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011
Nayan Chakravarty
Affiliation:
Dept. of Physics and Astronomy and Ames Laboratory, Iowa State University, Ames, Iowa 50011
Vikram Dalal
Affiliation:
Dept. of Physics and Astronomy and Ames Laboratory, Iowa State University, Ames, Iowa 50011
Get access

Abstract

Long wavelength photons in the red and near infrared region of the spectrum are poorly absorbed in thin film silicon cells, due to their long absorption lengths. Advanced light trapping methods are necessary to harvest these photons. The basic physical mechanisms underlying the enhanced light trapping in thin film solar cells using periodic back reflectors include strong diffraction coupled with light concentration. These will be contrasted with the scattering mechanisms involved in randomly textured back reflectors, which are commonly used for light trapping. A special class of conformal solar cells with plasmonic nano-pillar back reflectors will be described, that generates absorption beyond the classical 4n2 limit (the Lambertian limit) averaged over the entire wavelength range for nc-Si:H. The absorption beyond the classical limit exists for common 1 micron thick nc-Si:H cells, and is further enhanced for non-normal light. Predicted currents exceed 31 mA/cm2 for nc-Si:H. The nano-pillars are tapered into conical protrusions that enhance plasmonic effects. Such conformal nc-Si:H solar cells with the same device architecture were grown on periodic nano-hole, periodic nano-pillar substrates and compared with randomly textured substrates, formed by annealing Ag/ZnO or etched Ag/ZnO. The periodic back reflector solar cells with nano-pillars demonstrated higher quantum efficiency and higher photo-currents that were 1 mA/cm2higher than those for the randomly textured back reflectors. Losses within the experimental solar architectures are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schropp, R. E. I. and Zeman, M., “Amorphous and microcrystalline silicon solar cells: modeling, materials, and device technology”. (Springer, 1998).CrossRefGoogle Scholar
Shah, A. V., Schade, H., Vanecek, M., Meier, J., Vallat-Sauvain, E., Wyrsch, N., Kroll, U., Droz, C. and Bailat, J., Prog. Photovolt: Res. Appl. 12:113142 (2004).CrossRefGoogle Scholar
Yue, G. Z., Sivec, L., Owens, J. M., Yan, B. J., Yang, J. and Guha, S., Appl. Phys. Lett. 95 263501 (2009).CrossRefGoogle Scholar
Battaglia, C., Escarre, J., Soderstrom, K., Erni, L., Ding, L., Bugnon, G., Billet, A., Boccard, M., Barraud, L., DeWolf, S., Haug, F.J., Despeisse, M., Ballif, C., Nano Letters 11, 661 (2011).CrossRefGoogle Scholar
Yue, G. Z., Sivec, L., Yan, B., Yang, J., and Guha, S., Proccedings MRS Symposium A, 1245, A2101 (2010).Google Scholar
Isabella, O., Krc, J., Zeman, M., Appl. Phys. Lett. 97, 101106 (2010).CrossRefGoogle Scholar
Battaglia, C., Escarre´, J., Soderstrom, K., Charrie‵re, M., Despeisse, M., Haug, F.-J. and Ballif, C., Nature Photonics 5, 535 (2011).CrossRefGoogle Scholar
Ferry, V. E., Verschuuren, M. A., Li, H. B. T., Walters, R. J., Schropp, R. E. I., Atwater, H. A., Polman, A., Opt. Exp. 18, A237A245 (2010).CrossRefGoogle Scholar
Sai, H. and Kondo, M., J. Appl. Phys. 105, 094511 (2009).Google Scholar
Curtin, B., Biswas, R. and Dalal, V., Appl. Phys. Lett. 95, 231102 (2009).CrossRefGoogle Scholar
Bhattacharya, J., Chakravarty, N., Pattnaik, S., Slafer, W.D., Biswas, R., Dalal, V.L., Appl. Phys. Lett. 99, 131114 (2011)CrossRefGoogle Scholar
Yablonovitch, E., J. Opt. Soc. Am. 72, 899907 (1982).CrossRefGoogle Scholar
Tiedje, T., Yablonovitch, E., Cody, G. D., and Brooks, B., IEEE Trans. on El. Dev. ED-31, 711716 (1984).CrossRefGoogle Scholar
Schiff, E. A., J. Appl. Phys. 110, 104501 (2011).CrossRefGoogle Scholar
Biswas, R., Xu, C., Opt. Exp. 19, A664 (2011).CrossRefGoogle Scholar
Yu, Z., Raman, A., and Fan, S., Proc. Nat. Acad. Sci. 107(41) 1749117496 (2010).CrossRefGoogle Scholar
Springer, J., Poruba, A., Mullerova, L., Vanecek, M., Kluth, O., Rech, B., J. Appl. Phys. 95, 1427 (2004).CrossRefGoogle Scholar
Zhou, D. and Biswas, R., J. Appl. Phys. 103, 093102 (2008).CrossRefGoogle Scholar
Bermel, P., Luo, C., Zeng, L., Kimerling, L.C., Joannopoulos, J., Opt. Exp. 15, 16986 (2007).CrossRefGoogle Scholar
Atwater, H. and Polman, A., Nature Photonics 9, 205 (2010).Google Scholar
Pillai, S., Catchpole, K.R., Trupke, T., and Green, M.A., J. Appl. Phys. 101(9), 093105 (2007).CrossRefGoogle Scholar
Dahal, L. R., Sainju, D., Li, J., Stoke, J. A., Podraza, N., Deng, X., and Collins, R. W., Proceedings 33rd IEEE Photovoltaic Specialists Conference, 2008. pg.16.Google Scholar
Li, Z. Y. and Lin, L. L., Phys. Rev. E 67, 046607 (2003).Google Scholar
Haug, F. J. et al. , Proceedings MRS symposium J, Fall 2011, F11–1391–J06–06 (2011).Google Scholar
Yue, G., Yan, B. J., Sivec, L., Su, T., Zhou, Y., Yang, J., and Guha, S., Proceedings MRS Symposium A, A2.3 (2012).Google Scholar
Pattnaik, S., Chakravarty, N., Slafer, D., Biswas, R. and Dalal, V., Proceedings MRS Symposium A, A16.0 (2012).Google Scholar