Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T23:50:37.218Z Has data issue: false hasContentIssue false

Photoluminescence characterization of Mg implanted GaN

Published online by Cambridge University Press:  03 September 2012

C. Ronning
Affiliation:
University Göttingen, II. Phys. Institute, Bunsenstr. 7-9, D-37073 Göttingen, Germany
H. Hofsäss
Affiliation:
University Göttingen, II. Phys. Institute, Bunsenstr. 7-9, D-37073 Göttingen, Germany
A. Stötzler
Affiliation:
University of Konstanz, Fakultät für Physik, Box M621, D-78457 Konstanz, Germany
M. Deicher
Affiliation:
University of Konstanz, Fakultät für Physik, Box M621, D-78457 Konstanz, Germany
E.P. Carlson
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Box 7919, Raleigh, NC 27695, USA
P.J. Hartlieb
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Box 7919, Raleigh, NC 27695, USA
T. Gehrke
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Box 7919, Raleigh, NC 27695, USA
P. Rajagopal
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Box 7919, Raleigh, NC 27695, USA
R.F. Davis
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Box 7919, Raleigh, NC 27695, USA
Get access

Abstract

Single crystalline (0001) gallium nitride layers, capped with a thin epitaxial aluminum nitride layer, were implanted with magnesium and subsequently annealed in vacuum to 1150-1300 oC for 10-60 minutes. Photoluminescence (PL) measurements showed the typical donor acceptor pair (DAP) transition at 3.25 eV after annealing at high temperatures, which is related to optically active Mg acceptors in GaN. After annealing at 1300 °C a high degree of optical activation of the implanted Mg atoms was reached in the case of low implantation doses. Electrical measurements, performed after removing the AlN-cap and the deposition of Pd/Au contacts, showed no p-type behavior of the GaN samples due to the compensation of the Mg acceptors with native n-type defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ambacher, O., J. Phys. D: Appl. Phys. 31, 2653 (1998).Google Scholar
2. King, S.W., Barnak, J.P., Bremser, M.D., Tracy, K.M., Ronning, C., Davis, R.F., Nemanich, R.J., J. Appl. Phys. 84, 5248 (1998).Google Scholar
3. Vartuli, C.B., Pearton, S.J., Abernathy, C.R., MacKenzie, J.D., Lambers, E.S., Zolper, J.C., J. Vac. Sci. & Techn. B 14, 3523 (1996).Google Scholar
4. Zolper, J.C., J. Crystal Growth 178, 157 (1997).Google Scholar
5. Edgar, J.H. (ed.), Group III Nitrides, London, INSPEC (1994).Google Scholar
6. Zolper, J.C., Pearton, S.J., Williams, J.S., Tan, H.H., Karlicek, R.J., Stall, R.A., Mater. Res. Soc. Proc. Vol. 449, 981 (1997).Google Scholar
7. Tan, H.H., Williams, J.S., Zou, J., D.J.H. Cockayne, Pearton, S.J., Zolper, J.C., Stall, R.A., Appl. Phys. Lett. 72, 1190 (1998).Google Scholar
8. Strite, S., Epperlein, P.W., Dommann, A., Rockett, A., Broom, R.F., Mater. Res. Soc. Proc. Vol. 395, 795 (1996).Google Scholar
9. Strite, S., Pelzmann, A., Suski, T., Leszczynski, M., Jun, J., Rockett, A., Kamp, M., Ebeling, K. J., MRS Inter. J. Nitride Res. 2, 15 (1997); J. Appl. Phys. 84, 949 (1998).Google Scholar
10. Zolper, J.C., Han, J., Biefeld, R.M., S.B. van Deusen, Wampler, W.R., Pearton, S.J., Williams, J.S., Tan, H.H., Karlicek, R.J., Stall, R.A., Mater. Res. Soc. Proc. Vol. 468, 401 (1998).Google Scholar
11. Ronning, C., Linthicum, K.J., Carlson, E.P., Hartlieb, P.J., Thomson, D.B., Gehrke, T., Davis, R.F., Mat. Res. Soc. Symp. Proc. Vol. 537 (1999) and MRS Internet J. Nitride Semicond. Res. 4S1, G3.17 (1999). http://nsr.mij.mrs.org/4S1/G3.17/Google Scholar
12. Weeks, T.W. Jr., Bremser, M.D., Ailey, K.S., Carlson, E.P., Perry, W.G., Davis, R.F., Appl. Phys. Lett. 67, 401 (1995); J. Mat. Res. 11, 1011(1996).Google Scholar
13. Ziegler, J.F., Biersack, J.P., and Littmark, U., The stopping and ranges of ions in solids, (Pergamon Press, New York, 1985).Google Scholar
14. Smith, S. A., Wolden, C. A., Bremser, M. D., Hanser, A. D., Davis, R. F., Lampert, W. V., Appl. Phys. Lett. 71, 3631 (1997).Google Scholar
15. see e.g.: Oh, E., Park, H., Park, Y., Appl. Phys. Lett. 72, 70 (1998) and ref. therein.Google Scholar
16. Dalmer, M., Restle, M., tzler, A. Stö, Vetter, U., Hofsäss, H., Bremser, M.D., Ronning, C., Davis, R.F., Mat. Res. Soc. Proc. Vol. 482, 1021 (1998).Google Scholar
17. Carlson, E.P., Ronning, C., Davis, R.F., unpublished.Google Scholar
18. Pong, B.J., Pan, C.J., Teng, Y.C., Chi, G.C., Li, W.H., Lee, K.C., Lee, C.H., J. Appl. Phys. 83, 5992 (1998).Google Scholar
19. Pauw, L. van der, Philips Res. Rep. 13, 1 (1958).Google Scholar
20. Sze, S.M., „Physics of semiconductor devices“, John Wiley & Sons, New York (1988).Google Scholar