Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T13:20:24.422Z Has data issue: false hasContentIssue false

Photoemission Investigation of the Energy Level Alignment at the Rubrene/metal Interface

Published online by Cambridge University Press:  01 February 2011

Huanjun Ding
Affiliation:
hjding@pas.rochester.edu, university of rochester, department of physics and astronomy, Baush and Lomb Hall Room 8,, department of physics and astronomy,, university of rochester, rochester, NY, 14627, United States, 585-275-8588
Yongli Gao
Affiliation:
ygao@pas.rochester.edu, University of Rochester, Department of Physics and Astronomy, Rochester, NY, 14627, United States
Get access

Abstract

The electronic structure of the interfaces between rubrene and various metals, including Au, Ag, Al, and Ca, have been investigated with photoemission and inverse photoemission spectroscopy. The formation of the interface dipole is observed at all interfaces. The Fermi level shifts linearly within the band gap as a function of metal workfunction, until it is pinned at the lowest unoccupied molecular orbital (LUMO) by Ca. Strong interactions take place at the interface between rubrene and Ca, evidenced by the evolution of the valence features.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tsumura, A., Koezuka, H., and Ando, T., Appl. Phys. Lett. 49, 1210 (1986).10.1063/1.97417Google Scholar
2. Horowitz, G., Adv. Mater. 10, 365 (1998).Google Scholar
3. Katz, H. E., and Bao, Z., J. Phys. Chem. B 104, 671 (2000).Google Scholar
4. Seo, S., Park, B., and Evans, P. G., Appl. Phys. Lett., 88, 232114 (2004).10.1063/1.2210294Google Scholar
5. Nelson, S. F., Lin, Y. Y., Gundlach, D. J., and Jachson, T. N., Appl. Phys. Lett., 72, 1854 (1998).10.1063/1.121205Google Scholar
6. Choi, J., Lee, K., Hwang, D. K., Jim, J. H., and Im, S., J. Appl. Phys., 100, 116102 (2006).10.1063/1.2396712Google Scholar
7. halik, M., Klauk, H., Zschieschang, U., Schmid, G., Ponomarenko, S., Kirchmeyer, S., and Weber, W., Adv. Mater. 15, 917 (2003).10.1002/adma.200304654Google Scholar
8. Podzorov, V., Menard, E., Borissov, A., Kiryukhin, V., Rogers, J. A., and Gershenson, M. E., Phys. Rev. Lett., 93, 086602 (2004).Google Scholar
9. Wang, L., Chen, S., Liu, L., Qi, D., Gao, X., and Wee, A., Appl. Phys. Lett. 90, 132121 (2007).10.1063/1.2719033Google Scholar
10. Namatame, H., Tamura, M., Nakatake, M., Sto, H., Ueda, Y., Taniguchi, M., and Fujisawa, M., J. Electron Spectrosc. Relat. Phenom. 80, 393 (1996).10.1016/0368-2048(96)03000-9Google Scholar
11. Watkins, N. J., Yan, L., Gao, Y., Appl. Phys. Lett. 80, 4384 (2002).10.1063/1.1485129Google Scholar
12. Ochs, D., Braun, B., Maus-Friedrichs, W., Kempter, V., Surf. Sci. 417, 406 (1998).10.1016/S0039-6028(98)00721-3Google Scholar