Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T11:52:33.907Z Has data issue: false hasContentIssue false

The Photoelectric Properties of Oxygen-deficient Mixed-phase TiO2 Nanotube Arrays

Published online by Cambridge University Press:  25 May 2012

Chun-Hsien Chen
Affiliation:
Department of Materials Science Engineering, National Taiwan University, Taipei 106, Taiwan
Jay Shieh*
Affiliation:
Department of Materials Science Engineering, National Taiwan University, Taipei 106, Taiwan
Hua-Yang Liao
Affiliation:
Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan
Get access

Abstract

The photoelectric properties of oxygen-deficient titanium dioxide (TiO2) nanotube arrays are investigated in this study. The TiO2 nanotube arrays are prepared by anodization, followed by annealing at 450 to 750 °C for 3 h in air to form different crystalline phase mixtures. When the annealing temperature is increased, several phenomena are observed: (1) the ratio of anatase to rutile decreases, (2) the anatase nanotubes are shortened and (3) the thickness of the dense rutile film layer underneath the anatase nanotubes increases. The efficiency of visible light absorption of the nanotube arrays is enhanced with increasing annealing temperature. This is believed to be caused by the ionic defects, especially the oxygen vacancies, generated during the annealing procedure, enabling the absorption of low-energy radiations. The X-ray photoelectron spectroscopy (XPS) depth profile analysis provides the supporting evidence on the chemical nonstoichiometry (i.e., oxygen-deficiency) of the TiO2 nanotube arrays annealed at high temperature. With increasing annealing temperature, a decrease and an increase in the photocurrent density of the nanotube arrays under UV and visible light (wavelength > 500 nm) irradiations, respectively, are detected. The decrease of the photocurrent density under UV irradiation is caused by the reduction in the specific surface area (i.e., anatase nanotubes transform into rutile film with vigorous annealing). In contrast, the increase of the photocurrent density under visible light irradiation is contributed to the oxygen vacancies in the nanostructure, providing extra electron energy levels (locating below the conduction band of TiO2) within the band structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fujishima, A., and Honda, K., Nature 238, 3738 (1972).Google Scholar
2. Ni, M., Leung, M. K. H., Leung, D. Y. C., and Sumathy, K., Renew. Sustain. Energy Rev. 11, 401425 (2007).Google Scholar
3. Matsuoka, M., Kitano, M., Takeuchi, M., Tsujimaru, K., Anpo, M., and Thomas, J. M., Catal. Today 122, 5161 (2007).Google Scholar
4. Augugliaroa, V., Palmisanoa, L., Sclafania, A., Minerob, C., and Pelizzettib, E., Toxicol. Environ. Chem. 16, 89109 (1988).Google Scholar
5. Tang, H., Prasad, K., Sanjinès, R., Schmid, P. E., and Lévy, F., J. Appl. Phys. 75, 20422047 (1994).Google Scholar
6. Nowotny, M. K., Sheppard, L. R., Bak, T., and Nowotny, J., J. Phys. Chem. C 112, 52755300 (2008).Google Scholar
7. Kofstad, P., J. Phys. Chem. Solids 23, 15791586 (1962).Google Scholar
8. Weibel, A., Bouchet, R., and Knauth, P., Solid State Ionics 177, 229236 (2006).Google Scholar
9. Cronzmeyer, D. C., Phys. Rev. 113, 12221226 (1958).Google Scholar
10. Yang, S., Tang, W., Ishikawa, Y., and Feng, Q., Mater. Res. Bull. 46, 531537 (2011).Google Scholar
11. Spurr, R. A., and Myers, H., Anal. Chem. 29, 760762 (1957).Google Scholar
12. Varghese, O. K., Gong, D., Paulose, M., Grimes, C., and Dickey, E. C., J. Mater. Res. 18, 156165 (2003).Google Scholar
13. Zhang, H., and Banfield, J. F., J. Mater. Res. 15, 437448 (2000).Google Scholar
14. Kubelka, P., and Munk, F., Z. Tech. Phys. 12, 593601 (1931).Google Scholar
15. Barton, D. G., Shtein, M., Wilson, R. D., Soled, S. L., and Iglesia, E., J. Phys. Chem. B 103, 630640 (1999).Google Scholar
16. Tauc, J., in Amorphous and liquid semiconductor, edited by Tauc, J. (Springer Publisher, New York, 1974), p. 159220.Google Scholar
17. Saha, S., Pal, U., Chaudhuri, A. K., Rao, V. V., and Banerjee, H. D., Phys. Status Solidi A 114, 721729 (1989).Google Scholar
18. Zhao, L., Han, M., and Lian, J., Thin Solid Films 516, 33943398 (2008).Google Scholar
19. Coronado, D. R., Gattorno, G. R., Pesqueira, M. E. E., Cab, C., Coss, R. D., and Oskam, G., Nanotechnology 19, 145605 (2008).Google Scholar