Published online by Cambridge University Press: 11 January 2012
A hybrid assembly was built using ZnO nanowire (NW) arrays and colloidal CdSe quantum dots (QDs) stabilized by 3-mercaptopropionic acid (MPA). The QDs were chemically linked to the nanowires through the bonds formed between the outgoing carboxyl groups of the QD stabilizers and the zinc ions on the nanowire surface. An efficient clustering attachment of the QDs was achieved via partial removal of the stabilizers of the QDs. The photoconductivity of the NW/QD assembly was investigated by selective excitation of the CdSe QDs. Oxygen desorption from the nanowire surface enhances the photoconductivity and a model involving electron transfer between the QDs and the nanowires is proposed to explain the experimental results.