Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-02-03T21:27:59.846Z Has data issue: false hasContentIssue false

Photo-Chemical Etching on Silicon-Carbide by Using Krf Excimer Laser and Xe2* Excimer Lamp

Published online by Cambridge University Press:  15 February 2011

K. Hasegawa
Affiliation:
Engineering of Tokai University, 1117 Kitakaname, Hiratsuka, Kanagawa, 259-12, JAPAN
M. Murahara
Affiliation:
Engineering of Tokai University, 1117 Kitakaname, Hiratsuka, Kanagawa, 259-12, JAPAN
Get access

Abstract

Silicon-carbide (SiC) has excellent refractivity in the range of soft X-ray and is well-used as a diffraction grating for Synchrotron-radiation (SR) light. This material has a high melting point, hardness and chemical stability. Therefore, etching of the material by chemical or physical methods is very difficult. We reported a photo-chemical etching method in which a SiC surface is placed in NF3 gas atmosphere and irradiated by the Xe2* excimer lamp light parallelly and the grating patterned KrF laser light of 248nm perpendicularly on the sample surface. The Xe2* excimer lamp light are employed for NF3 gas decomposition, and KrF laser light used for excitation on the sample surface. This photochemical etching reaction are detected by XPS, QMS and FTIR measurements. This method achieved 0.18 Å/shot in etching efficiency, and became maximum approximately 7 times as high as ArF laser light for photodecomposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Dohmae, S., Shibahara, K., Nishino, S. and Matsunami, H. Jpn. J. Appl. Phys. 2 L873 (1985)Google Scholar
2 Palmour, J. W., Davis, R. G., Wallett, T. M. and Bhasin, K. B. J. Vac. Sci. Tcchnol. A 4, 590(1986)Google Scholar
3 Sugiura, J., Lu, W. J., Cadien, K. C. and Steekl, A. J., J. Vac. Sci. Technol. B 4, 349 (1986)Google Scholar
4 Palmour, J. W., Davis, R. G., Astell-Burt, P. and Blackborow, P.. Mater. Res. Soc. Symp. Proc. 76. 185(1987)Google Scholar
5 Kelner, G., Binan, S. C. and Klein, P. H., J.Electrochem. Soc. 134, 253 (1987)Google Scholar
6 Carrabba, M. M.., Li, J., Hachey, J. P., Rauh, R. D. and Wang, Y. Electrochem. Soc. Extended Abstracts. 89–2 (1989), p. 727 Google Scholar
7 Pan, W. S. and Steekl, A. J. and Kelein, P. H. J. Electorochem.Soc. 137, 212 (1990)Google Scholar
8 Steckl, A. J. and Yih, P. H., Appl. Phys. Lett. 60, 1966 (1992)Google Scholar
9 Ghezzo, M., Brown, D. M., Downey, E., Kretchmer, J., Hennessv, W., Polla, D. L. and Bakliru, H.. IEEE Electron Devices Lett. 13,639(1992)Google Scholar
10 Brown, D. M., Downey, E. T., Ghezzo, M., Kretchner, J., Saia, R. J., Lin, Y. S., Edmond, J. A., Gati, G., Pimbley, H. M. and Schneider, W. E., IEEE Trans. Electron Devices ED-40, 325 (1993)Google Scholar
11 Luther, B. P., Ruzyllo, J. and Miller, D. L., Appl. Phys. Lett. 63, 171 (1993)Google Scholar
12 Flemish, J. R., Xie, K. and Zhao, J. H., Appl. Phys. Lett. 64, 2314 (1994)Google Scholar
13 Bounasri, F., Moisan, M., St-Onge, L., Margot, J., Caker, M., Pelletier, J., El Khakani, M. A. and Gat, E., J. Appl. Phvs. 77, 4030 (1995)Google Scholar
14 Shor, J. S., Osgood, R. M. and Kurtz, A. D., Appl. Phys. Lett. 60 (8). 24 Febaiary (1992)Google Scholar
15 Shor, J. S., Zhang, X., Ruberto, M. N., Podlesik, D. V. and Osgood, R. M. CLEO'90, CWH2 (1990)Google Scholar
16 Murahara, M., Arai, H., Matumura, T., Mater. Res. Soc. Symp. Proc. 129, 315 (1988)Google Scholar
17 Murahara, M., Yonekawa, M., Shirakawa, K., Mater. Res. Soc. Symp. Proc. 158, 295 (1989)Google Scholar
18 Murahara, M.. SPIE, Laser / Optical Proc. of Electro. Maer. 1190, 136 (1989)Google Scholar
19 Shirakawa, K. and Murahara, M., Springer Proc. in Phys. 71, 328 (1992)Google Scholar
20 Eliasson, B. and Kogelschatz, U., Appl. Phys. B46, 299 (1988)Google Scholar
21 Murahara, M., Toyoda, K. Springer Series in Chem. Phys. 39, 252 (1984)Google Scholar