Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T13:30:48.545Z Has data issue: false hasContentIssue false

Phase Transitions on Gan Surfaces

Published online by Cambridge University Press:  11 February 2011

C. Adelmann
Affiliation:
Equipe mixte CEA-CNRS-UJF Nanophysique et Semiconducteurs, Département de Recherche Fondamentale sur la Matière Condensée, SP2M/PSC, CEA-Grenoble, 17 rue des Martyrs, 38054-Grenoble Cedex 9, France
L. Lymperakis
Affiliation:
Fritz-Haber-Institut, Faradayweg 4–6, 14195 Berlin, Germany
J. Brault
Affiliation:
Equipe mixte CEA-CNRS-UJF Nanophysique et Semiconducteurs, Département de Recherche Fondamentale sur la Matière Condensée, SP2M/PSC, CEA-Grenoble, 17 rue des Martyrs, 38054-Grenoble Cedex 9, France
G. Mula
Affiliation:
Equipe mixte CEA-CNRS-UJF Nanophysique et Semiconducteurs, Département de Recherche Fondamentale sur la Matière Condensée, SP2M/PSC, CEA-Grenoble, 17 rue des Martyrs, 38054-Grenoble Cedex 9, France
J. Neugebauer
Affiliation:
Fritz-Haber-Institut, Faradayweg 4–6, 14195 Berlin, Germany
B. Daudin
Affiliation:
Equipe mixte CEA-CNRS-UJF Nanophysique et Semiconducteurs, Département de Recherche Fondamentale sur la Matière Condensée, SP2M/PSC, CEA-Grenoble, 17 rue des Martyrs, 38054-Grenoble Cedex 9, France
Get access

Abstract

Recent experimental and theoretical studies highlighted the importance of the growing surface structure on the final morphology of GaN. Actually, optimum morphology is achieved by growth in presence of a Ga bilayer adsorbed on the GaN surface. The threshold fluxes limiting the region of the Ga bilayer adsorption have been measured as a function of the GaN substrate temperature, giving rise to a Ga adsorption phase diagram. The Ga flux limiting the regions in the adsorption phase diagram exhibit a linear behavior in an Arrhenius plot. However, both energy activation (about 5 eV) and prefactor (in the 1025 range) are surprinsingly high. These questions were adressed by studying the adsorption/desorption of Ga adatoms and small islands (consisting of 2 and 3 Ga adatoms) on the Ga bilayer surface employing first principle density functional theory calculations. We find a desorption barrier of 2.1 eV and a binding energy between two Ga atoms of approximately 0.3 eV. Using these numbers we derived a simple growth model (based on rate equations). An analysis of the experimental data with the model revealed the origin of the large difference in the activation energies and the unusually large prefactor. We find that the nucleation of the droplets cannot be described by a simple Arrhenius behavior (as commonly assumed to fit experimental data) but that the nucleation energy is temperature dependent.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Widmann, F., Daudin, B., Feuillet, G., Pelekanos, N., and Rouvière, J. L., Appl. Phys. Lett. 73, 2642 (1998).Google Scholar
2 Kruse, C., Einfeldt, S., Böttcher, T., and Hommel, D., Appl. Phys. Lett. 79, 3425 (2001)Google Scholar
3 Monroy, E., Daudin, B., Bellet-Amalric, E., Gogneau, N., Jalabert, D., Enjalbert, F., Brault, J., Barjon, J., and Dang, Le Si, J. Appl. Physics, in pressGoogle Scholar
4 Adelmann, C., Brault, J., Jalabert, D., Gentile, P., Mariette, H., Mula, G., and Daudin, B., J. Appl. Phys. 91, 9638 (2002)Google Scholar
5 Heying, B., Averbeck, R., Chen, L. F., Haus, E., Riechert, H., and Speck, J. S., J. Appl. Phys. 88, 1855 (2000)Google Scholar
6 Mula, G., Adelmann, C., Moehl, S., Oullier, J., and Daudin, B., Phys. Rev. B 64, 195406 (2001)Google Scholar
7 Zheng, L. X., Xie, M. H., and Tong, S. Y., Phys. Rev. B 61, 4890 (2001)Google Scholar
8 Adelmann, C., Brault, J., Mula, Guido, Daudin, B., Lymperakis, L., Neugebauer, J., unpublishedGoogle Scholar
9 Northrup, J. E., Neugebauer, J., Feenstra, R. M., and Smith, A. R., Phys. Rev. B 61, 9932 (2000).Google Scholar