Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T14:13:20.156Z Has data issue: false hasContentIssue false

Phase Transitions Induced By Femtosecond Pulses

Published online by Cambridge University Press:  15 February 2011

E. N. Glezer
Affiliation:
Division of Applied Sciences and Department of Physics, Harvard University, Cambridge, MA 02138
L. Huang
Affiliation:
Division of Applied Sciences and Department of Physics, Harvard University, Cambridge, MA 02138
Y. Siegal
Affiliation:
Division of Applied Sciences and Department of Physics, Harvard University, Cambridge, MA 02138
J. P. Callan
Affiliation:
Division of Applied Sciences and Department of Physics, Harvard University, Cambridge, MA 02138
E. Mazur
Affiliation:
Division of Applied Sciences and Department of Physics, Harvard University, Cambridge, MA 02138
Get access

Abstract

Optical studies of semiconductors under intense femtosecond laser pulse excitation suggest that an ultrafast phase transition takes places before the electronic system has time to thermally equilibrate with the lattice. The excitation of a critical density of valence band electrons destabilizes the covalent bonding in the crystal, resulting in a structural phase transition. The deformation of the lattice leads to a decrease in the average bonding-antibonding splitting and a collapse of the band-gap. Direct optical measurements of the dielectric constant and second-order nonlinear susceptibility are used to determine the time evolution of the phase transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Shank, C. V., Yen, R., and Hirlimann, C., Phys. Rev. Lett. 50, 454 (1983).Google Scholar
2 Downer, M. C., Fork, R. L., and Shank, C. V., J. Opt. Soc. Am. B 2, 595 (1985).Google Scholar
3 Tom, H. W. K., Aumiller, G. D., and Brito-Cruz, C. H., Phys. Rev. Lett. 60, 1438 (1988).Google Scholar
4 Schröder, T., Rudolph, W., Govorkov, S. V., and Shumai, I. L., Appl. Phys. A 51, 1438 (1990).Google Scholar
5 Govorkov, S. V., Shumay, I. L., Rudolph, W., and Schroeder, T., Opt. Lett. 16, 1013 (1991).Google Scholar
6 Sokolowski-Tinten, K., Schulz, H., Bialkowski, J., and von der Linde, D., Appl Phys A 53, 227(1991).Google Scholar
7 Saeta, P. N., Wang, J., Siegal, Y., Bloembergen, N., and Mazur, E., Phys. Rev. Lett. 67, 1023 (1991).Google Scholar
8 Siegal, Y., Glezer, E. N., and Mazur, E., Phys. Rev. B 49, 16 (1994).Google Scholar
9 Siegal, Y., Glezer, E. N., Huang, L., and Mazur, E., in Ultrafast Phenomena in Semiconductors, edited by Ferry, D. K. and van Driel, H. M. (SPIE, Bellingham, Washington, 1994).Google Scholar
10 Siegal, Y., Glezer, E. N., and Mazur, E., in Femtosecond Chemistry, edited by Manz, J. and Wöste, L. (Verlag Chemie, Berlin, 1994).Google Scholar
11 Glezer, E. N., Siegal, Y., Huang, L., and Mazur, E., Phys. Rev. B 51, 6959 (1995).Google Scholar
12 Kurz, H., and Bloembergen, N., in Energy Beam-Solid Interactions and Transient Thermal Processing, edited by Biegelsen, D. K., Rozgonyi, G. A. and Shank, C. V. (Materials Research Society, Pittsburgh, 1985).Google Scholar
13 Choo, H. R., Hu, X. F., and Downer, M. C., Appl. Phys. Lett. 63, 1507 (1993).Google Scholar
14 Wang, X. Y., and Downer, M. C., Opt. Lett. 17, 1450 (1992).Google Scholar
15 Downer, M. C., Ahn, Reitze, and Wang, X. Y., Int. J. Thermophysics 14, 361 (1993).Google Scholar
16 Ahn, , Wang, X. Y., and Downer, M. C., in Short Wavelength V: Physics with Intense Laser Pulses, edited by Perry, M. D. and Corkum, P. B. 1993).Google Scholar
17 Shank, C. V., Yen, R., and Hirlimann, C., Phys. Rev. Lett. 51, 900 (1983).Google Scholar
18 Liu, J. M., Malvezzi, A. M., and Bloembergen, N., in Energy Beam-Solid Interactions and Transient Thermal Processing, edited by Biegelsen, D. K., Rozgonyi, G. A. and Shank, C. V. (Materials Research Society, Pittsburgh, 1985).Google Scholar
19 Akhmanov, S. A., Emel'yanov, V. I., Koroteev, N. I., and Seminogov, V. N., Sov Phys Usp 28, 1084 (1985).Google Scholar
20 Shen, Y. R., The Principles of Nonlinear Optics; (John Wiley & Sons, New York, 1984).Google Scholar
21 Cohen, M. L., and Chelikowsky, J. R., Electronic Structure and Optical Properties of Semiconductors; (Springer-Verlag, Berlin, 1988).Google Scholar
22 Harrison, W. A., Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond; (Dover, New York, 1989).Google Scholar
23 Philipp, H. R., and Ehrenreich, H., Phys. Rev. 129, 1550 (1963).Google Scholar
24 Palik, E. D., in Handbook of Optical Constants of Solids, edited by Palik, E. D. (Academic Press, Inc., New York, 1985).Google Scholar
25 Aspnes, D. E., Schwartz, G. P., Gualtieri, G. J., Studna, A. A., and Schwartz, B., J. Electrochem. Soc. 128, 590 (1981).Google Scholar
26 Jackson, J. D., Classical Electrodynamics; (Wiley, New York, 1975).Google Scholar
27 Malvezzi, A. M., Kurz, H., and Bloembergen, N., in Energy Beam-Solid Interactions and Transient Thermal Processing, edited by Biegelsen, D. K., Rozgonyi, G. A. and Shank, C. V. (Materials Research Society, Pittsburgh, 1985).Google Scholar
28 Saeta, P. N., Ph.D. Thesis, Harvard University, 1991.Google Scholar
29 Othonos, A., van Driel, H. M., Young, J. F., and Kelly, P. I., Solid-State Electron. 32, 1573 (1989).Google Scholar
30 Fauchet, P. M., and Li, K. D., J. Non-Crystalline Solids 97‘98, 1267(1987).Google Scholar
31 van Driel, H. M., Phys Rev B 35, 8166 (1987).Google Scholar
32 Othonos, A., van Driel, H. M., Young, J. F., and Kelly, P. J., Phys. Rev. B 43, 6682 (1991).Google Scholar
33 Wang, J. K., Siegal, Y., , C. Z., and Mazur, E., Opt. Comm. 91, 77 (1992).Google Scholar
34 Siegal, Y., Ph.D. Thesis, Harvard University, 1994.Google Scholar
35 Note that if the oscillator strength and the spectral width of an absorption peak are held fixed, then the height of the absorption peak increases as its resonant frequency decreases.Google Scholar
36 Greenaway, D. L., and Harbeke, G., Optical Properties and Band Structure of Semiconductors; (Pergamon Press, Oxford, 1968).Google Scholar
37 Potter, R. F., in Optical Properties of Solids, edited by Nudelman, S. and Mitra, S. S. (Plenum Press, New York, 1969).Google Scholar
38 Reitze, D. H., Ahn, H., and Downer, M. C., Phys. Rev. B 45, 2677 (1992).Google Scholar
39 Glezer, E. N., Siegal, Y., Huang, L., and Mazur, E., Phys. Rev. B 51, 9589 (1995).Google Scholar
40 Kim, D. H., Ehrenreich, H., and Runge, E., Solid State Commun. 89, 119 (1994).Google Scholar
41 Van Vechten, J. A., Tsu, R., and Saris, F. W., Phys. Lett. 74A, 422 (1979).Google Scholar
42 Biswas, R., and Ambegoakar, V., Phys. Rev. B 26, 1980 (1982).Google Scholar
43 Stampfli, P., and Bennemann, K. H., Phys. Rev. B 42, 7163 (1990).Google Scholar
44 Stampfli, P., and Bennemann, K. H., J. Phys. Condens. Matter 5, supplement, A173 (1993).Google Scholar
45 Froyen, S., and Cohen, M. L., Phys. Rev. B 28, 3258 (1983).Google Scholar
46 Jellison, G. E., and Modine, F. A., Phys. Rev. B 27, 7466 (1983).Google Scholar
47 Walter, J. P., Zucca, R. R. L., Cohen, M. L., and Shen, Y. R., Phys. Rev. Lett. 24, 102 (1970).Google Scholar
48 Akhmanov, S. A., Galyautdinov, M. F., Koroteev, N. I., Paityan, G. A., Khaibullin, I. B., Shtyrkov, E. I., and Shumai, I. L., Bull. Acad. Sci. USSR, Phys. Ser. 49, 86 (1985).Google Scholar
49 Spaepen, F., in Ultrafast Phenomena V, edited by Fleming, G. R. and Siegman, A. E. (Springer-Verlag, Berlin, 1986).Google Scholar