Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T15:11:56.843Z Has data issue: false hasContentIssue false

Phase Transformations in Non-stoichiometric GaAs with Sb and P Doping

Published online by Cambridge University Press:  26 February 2011

Vladimir Chaldyshev
Affiliation:
chald.gvg@mail.ioffe.ru, Ioffe Physico-Technical Institute, RAS, Solid State Electronics, Polytechnicheskaya 26, St. Petersburg, N/A, Russian Federation
Nikolay A. Bert
Affiliation:
chald.gvg@mail.ioffe.ru, Ioffe Physico-Technical Institute, RAS, Solid State Electronics, Polytechnicheskaya 26, St. Petersburg, 194021, Russian Federation
Anton V. Boitsov
Affiliation:
chald.gvg@mail.ioffe.ru, Ioffe Physico-Technical Institute, RAS, Solid State Electronics, Polytechnicheskaya 26, St. Petersburg, 194021, Russian Federation
Yurii G. Musikhin
Affiliation:
chald.gvg@mail.ioffe.ru, Ioffe Physico-Technical Institute, RAS, Solid State Electronics, Polytechnicheskaya 26, St. Petersburg, 194021, Russian Federation
Maria A. Yagovkina
Affiliation:
chald.gvg@mail.ioffe.ru, Ioffe Physico-Technical Institute, RAS, Solid State Electronics, Polytechnicheskaya 26, St. Petersburg, 194021, Russian Federation
Valerii V. Preobrazhenskii
Affiliation:
chald.gvg@mail.ioffe.ru, Institute of Semiconductor Physics, Novosibirsk, 630090, Russian Federation
Mikhail A. Putyato
Affiliation:
chald.gvg@mail.ioffe.ru, Institute of Semiconductor Physics, Novosibirsk, 630090, Russian Federation
Boris R. Semyagin
Affiliation:
chald.gvg@mail.ioffe.ru, Institute of Semiconductor Physics, Novosibirsk, 630090, Russian Federation
Get access

Abstract

We investigate the phase transformation in non-stoichiometric GaAs films, which are doped with group V isovalent impurities, namely Sb and P. In contrast to Al and In atoms of group III, group V atoms may not only form substitutional alloys with the GaAs matrix, but also can be dissolved in As precipitates. Our experimental study based on transmission electron microscopy, x-ray diffraction and optical characterizations revealed an opposite impact of the P and Sb alloying on the nucleation, growth and coarsening of the second phase. While Sb enhances the precipitation rate, P retards it. Delta-doping with Sb causes two-dimensional precipitation, whereas such doping with P does not result in heterogeneous nucleation. The microstructure and strains have been found to be different around nanoinclusions in the Sb-doped and P-doped materials, indicating different thermodynamics and kinetics of segregation of the two isovalent impurities in As nanoclusters. We analyze the observed phenomena in terms of thermodynamic and kinetic models taking into account the underlying phase equilibriums and diffusion mechanisms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Symposium on Non-Stoichiometric III–V Compounds. Erlangen-Nurnberg, Germany, 1998, 1999.Google Scholar
2. Nolte, D.D., J. Appl. Phys. 85, 6259 (1999).Google Scholar
3. Zheng, X., Xu, Y., Sobolewski, R., Adam, R., Mikulics, M., Siegel, M., and P. Kordos. Appl. Opt. 42, 1726 (2003).Google Scholar
4. Chaldyshev, V. V., Materials Science & Engineering B 88, 85 (2002).Google Scholar
5. Mahalingam, K., Otsuka, N., Melloch, M.R., and Woodall, J.M., Appl. Phys. Lett. 60, 3253 (1992).Google Scholar
6. Cheng, T.M., Chang, C.V., Chin, A., Huang, M.F., and Huang, J.H., Appl. Phys. Lett. 64, 2517 (1994).Google Scholar
7. Bert, N.A., Chaldyshev, V.V., Faleev, N.N., Kunitsyn, A.E., Lubyshev, D.I., Preobrazhenskii, V.V., Semyagin, B.R., Tretyakov, V.V., Semicond. Sci. Technol. 12, 51 (1997).Google Scholar
8. Bert, N.A., Chaldyshev, V.V., Suvorova, A.A., Preobrazhenskii, V.V., Putyato, M.A., Semyagin, B.R., and Werner, P., Appl. Phys. Lett. 74, 1588 (1999).Google Scholar
9. Martin, G.M., Appl. Phys. Lett. 39 747 (1981).Google Scholar
10. Liu, X., Prasad, A., Nishio, J., Weber, E.R., Liliental-Weber, Z., Walukiewicz, W., Appl. Phys. Lett. 67 279 (1995).Google Scholar
11. Boitsov, A.V., Bert, N.A., Musikhin, Yu. G., Chaldyshev, V.V., Jagovkina, M.A., Preobrazhenskii, V.V., Putyato, M.A., and Semyagin, B.R., Semiconductors, 40, 778 (2006).Google Scholar
12. Vasyukov, D. A., Baidakova, M. V., Chaldyshev, V. V., Suvorova, A. A., Preobrazhenskii, V. V., Putyato, M. A., Semyagin, B.R., J. Phys. D: Appl. Phys. 34, A15 (2001).Google Scholar
13. Bert, N.A., Kolesnikova, A.L., Romanov, A.E., Chaldyshev, V.V.. Phys. Sol. State 44, 2240 (2002).Google Scholar
14. Chaldyshev, V.V., Kolesnikova, A.L., Bert, N.A., Romanov, A.E.. J. Appl. Phys. 97, 024309 (2005).Google Scholar