Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T13:51:48.674Z Has data issue: false hasContentIssue false

Perovskite Based Hybrid Solar Cells with Transparent Carbon Nanotube electrodes

Published online by Cambridge University Press:  21 July 2014

Kamil Mielczarek
Affiliation:
Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75080, U.S.A.
Anvar A. Zakhidov
Affiliation:
Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75080, U.S.A.
Get access

Abstract

Recently, major advances have been made in electrolytic and solid state DSSCs through the use of perovskite nanocrystals as a sensitizing agent where power conversion efficiencies of over 12% have been realized [1–3]. Moreover the planar DSSC/PV devices with perovskites used as photoactive absorbers sandwiched between selective electron and hole transport layers have demonstrated record performances. Additionally, the uses of carbon nanotubes (CNTs) as a flexible, transparent, lightweight and robust electrode material have been demonstrated in both DSSC as well as OPV devices. The application of CNTs as a charge collector with perovskite sensitized solid state planar PV and DSSCs is discussed. Performance characteristics of CNTs within perovskite based hybrid OPVs are investigated and the role of CNTs as an efficient charge collector is extended to the inverted geometry.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Burschka, J., Pellet, N., et al. ., Nature 499, 316 (2013).10.1038/nature12340CrossRefGoogle Scholar
Heo, J.H., Im, S.H., et al. ., Nat. Photonics 7, 486 (2013).10.1038/nphoton.2013.80CrossRefGoogle Scholar
Im, J.-H., Lee, C.-R., et al. ., Nanoscale 3, 4088 (2011).10.1039/c1nr10867kCrossRefGoogle Scholar
Krebs, F.C., Tromholt, T., and Jørgensen, M., Nanoscale 2, 873 (2010).10.1039/b9nr00430kCrossRefGoogle Scholar
Guo, X., Zhou, N., et al. ., Nat. Photonics 7, 825 (2013).10.1038/nphoton.2013.207CrossRefGoogle Scholar
Yella, A., Lee, H.-W., et al. ., Science 334, 629 (2011).10.1126/science.1209688CrossRefGoogle Scholar
Burschka, J., Dualeh, A., et al. ., J. Am. Chem. Soc. 133, 18042 (2011).10.1021/ja207367tCrossRefGoogle Scholar
Chung, I., Lee, B., et al. ., Nature 485, 486 (2012).10.1038/nature11067CrossRefGoogle Scholar
Li, W., Furlan, A., et al. ., J. Am. Chem. Soc. 135, 5529 (2013).10.1021/ja401434xCrossRefGoogle Scholar
You, J., Dou, L., et al. ., Nat. Commun. 4, 1446 (2013).10.1038/ncomms2411CrossRefGoogle Scholar
Tanaka, S., Mielczarek, K., et al. ., Appl. Phys. Lett. 94, 113506 (2009).10.1063/1.3095594CrossRefGoogle Scholar
Yang, Y., Mielczarek, K., et al. ., ACS Nano 0, null (2012).Google Scholar
Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T., J. Am. Chem. Soc. 131, 6050 (2009).10.1021/ja809598rCrossRefGoogle Scholar
Lee, M.M., Teuscher, J., et al. ., Science 338, 643 (2012).10.1126/science.1228604CrossRefGoogle Scholar
Liu, M., Johnston, M.B., and Snaith, H.J., Nature 501, 395 (2013).10.1038/nature12509CrossRefGoogle Scholar
You, J., Hong, Z., et al. ., ACS Nano (2014).Google Scholar
Xing, G., Mathews, N., et al. ., Science 342, 344 (2013).10.1126/science.1243167CrossRefGoogle Scholar
Stranks, S.D., Eperon, G.E., et al. ., Science 342, 341 (2013).10.1126/science.1243982CrossRefGoogle Scholar
Nasibulin, A.G., Kaskela, A., et al. ., ACS Nano 5, 3214 (2011).10.1021/nn200338rCrossRefGoogle Scholar
Kaskela, A., Nasibulin, A.G., et al. ., Nano Lett. 10, 4349 (2010).10.1021/nl101680sCrossRefGoogle Scholar
Liu, D. and Kelly, T.L., Nat. Photonics 1 (2013).Google Scholar
Snaith, H.J., Abate, A., et al. ., J. Phys. Chem. Lett. 17, 140324182322004 (2014).Google Scholar
Mielczarek, K., Cook, A., Kuznetsov, A., and Zakhidov, A., (2013).Google Scholar
Po, R., Carbonera, C., et al. ., Sol. Energy Mater. Sol. Cells 100, 97 (2012).10.1016/j.solmat.2011.12.022CrossRefGoogle Scholar
Krebs, F.C., Sol. Energy Mater. Sol. Cells 92, 715 (2008).10.1016/j.solmat.2008.01.013CrossRefGoogle Scholar
Galagan, Y., Rubingh, J.-E. J.M., et al. ., Sol. Energy Mater. Sol. Cells 95, 1339 (2011).10.1016/j.solmat.2010.08.011CrossRefGoogle Scholar
Bao, Q., Liu, X., Braun, S., and Fahlman, M., Adv. Energy Mater. 4, n/a (2014).10.1002/aenm.201301272CrossRefGoogle Scholar