Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T01:53:30.731Z Has data issue: false hasContentIssue false

Permeability of A Liquid Crystalline Epoxy

Published online by Cambridge University Press:  15 March 2011

Jianxun Feng
Affiliation:
Department of Materials Science & Engineering, University of Florida, PO Box 116400, Gainesville, Florida 32611
Elliot P. Douglas
Affiliation:
Department of Materials Science & Engineering, University of Florida, PO Box 116400, Gainesville, Florida 32611
Get access

Abstract

This paper presents a comparison of moisture permeation in liquid crystalline and conventional epoxy systems. The permeability is obtained using a dynamic method. It is found that both epoxy systems exhibit Fickian behavior. The liquid crystalline epoxy network exhibits higher barrier properties for moisture transport than the conventional epoxy network. The efficient chain packing within the smectic mesophase of the liquid crystalline thermoset (LCT) is suggested as the main factor for this difference. The stoichiometry has a large effect on the moisture permeation. The diffusion coefficient decreases monotonically with increasing amine/epoxide functional ratio. The permeability (P) and solubility coefficient (S) reach a minimum at a functional ratio of one. The mechanism of the permeation is described in terms of the two-phase morphology present and hydrogen bonding between absorbed water and the network.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lin, Q. H., Yee, A. F., Sue, H. J., Earls, J. D., Hefner, R. E., J. Polym. Sci., Polym. Phys. Ed, 35, 2363 (1997).Google Scholar
2. Shiota, A., Ober, C. K., Prog. Polym. Sci., 22, 975 (1997).Google Scholar
3. Carfagna, C., Amendola, E., Giamberini, M., Prog. Polym. Sci., 7, 22, 1607 (1997).Google Scholar
4. Langlois, D. A., Benicewicz, B.C., Douglas, E. P., Chem. Mater. 10, 3393 (1998).Google Scholar
5. Lee, J. Y., Jang, J., Hong, S. M., Hwang, S. S., Kim, K. U., Polymer, 40, 3197 (1999).Google Scholar
6. Lee, J. Y., Jang, J., Hwang, S. S., Hong, S. M., Kim, K. U., Polymer, 39, 6121 (1998).Google Scholar
7. Kricheldorf, H. R., Krawinkel, T., Macromol. Chem. Phys, 199, 783 (1998).Google Scholar
8. Amendola, E., Carfagna, C., Giamberini, M., Komitov, L., Liq. Crys., 21, 317 (1996).Google Scholar
9. Barclay, G. C., McNamee, S. G., Ober, C. K., Papathomas, K. I., Wang, D. W., J. Polym. Sci., Polym. Chem. Ed, 30, 1845 (1992).Google Scholar
10. Benicewicz, B. C., Smith, M. E., Earls, J. D., Priester, R. D., Douglas, E. P., Chemtech, 27, 44 (1997).Google Scholar
11. Ortiz, C., Kim, R., Rodioghiero, E., Ober, C. K., Kramer, E. J., Macromolecules, 31, 4074 (1998).Google Scholar
12. Carfagna, C., Amendola, E., Giamerini, M., Liquid Crystaline Epoxy Resins; Carfagna, C., Ed.; Persaman Press: Cupri, Italy, p 69 (1993).Google Scholar
13. Yeob, J., Jang, J., J. Polym. Sci. Polym. Chem. Ed, 36, 911 (1998).Google Scholar
14. Gavrin, A. J., Curts, C. L., Douglas, E. P., J. Polym. Sci. Polym. Chem., 37, 4184 (1999).Google Scholar
15. Carfagna, C., Amendola, E., Giamberino, M., Mensitieri, G., Nobile, M., Polym. Eng. Sci., 35, 137 (1995).Google Scholar
16. Feng, J., Interaction and Permeability of Water with Liquid Crystalline Thermosets; Ph.D. Dissertation, University of Florida, (2001).Google Scholar