Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T18:57:14.793Z Has data issue: false hasContentIssue false

Performance of Thin-film a-Si:H Microresonators in Dissipative Media

Published online by Cambridge University Press:  01 February 2011

Teresa Adrega
Affiliation:
tadrega@inesc-mn.pt, INESC-MN, INESC-MN, Rua Alves Redol,9, Lisbon, N/A, 1000-029, Portugal
D. M.F. Prazeres
Affiliation:
prazeres@alfa.ist.utl.pt, Instituto Superior Tecnico, Center of Biological and Chemical Engineering, Av. Rovisco Pais, Lisbon, N/A, 1049-001, Portugal
V. Chu
Affiliation:
vchu@inesc-mn.pt, INESC-MN, Rua Alves Redol,9, Lisbon, N/A, 1000-029, Portugal
J.P. Conde
Affiliation:
joao.conde@ist.utl.pt, INESC-MN, Rua Alves Redol,9, Lisbon, N/A, 1000-029, Portugal
Get access

Abstract

The resonance of electrostatically actuated thin-film a-Si:H microbridges immersed in de-ionized water is detected and characterized. When the operating medium changes from vacuum to air, a small decrease of 5% of the resonance frequency occurs and the quality factor decreases from approximately 1000 to 100. The operation of the microresonators in deionized water produces a 60% shift in resonance frequency to lower values and the quality factor decreases to 10. Appropriate actuation conditions at resonance in water are used to avoid electrolysis and electrode field screening. The detection of the resonance frequency of a microbridge operating in solutions with high conductivities, up to 8 mS/cm, and viscosities up to 0.2 Pa.s is demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sze, S.M., Semiconductor Sensors, New York, John & Sons (1994).Google Scholar
2. Maluf, N., An introduction to Microelectromechanical Systems Engineering, Boston, (2000).Google Scholar
3. Boucinha, M., Chu, V., Conde, J.P., Appl Phys.Lett. 73, 502 (1998).Google Scholar
4. Gaspar, J., Chu, V., Conde, J. P., Appl. Phys. Lett. 84, 622 (2004).Google Scholar
5. Ilic, B., Caplewski, D., Craighead, H.G., Neuzil, P., Campagnolo, C., Batt, C., Appl. Phys. Lett. 77, 450 (2000).Google Scholar
6. Cherian, S., Gupta, R.K., Mullin, B., Thundat, T., Biosensores and Bioelectronics 19, 411 (2003).Google Scholar
7. , Su, Li, S., and Dravid, V.P., Appl. Phys. Lett. 82, 3562 (2003).Google Scholar
8. Yi, J. W., Shih, W. Y., Mutharasan, R., Shih, W., J. Appl. Phys. 93, 619 (2003).Google Scholar
9. Oden, P. I., Chen, G.Y., Steele, R. A., Warmack, R. J., Thundat, T., Appl. Phys. Lett. 68, 3814 (1996).Google Scholar
10. Sounart, T. L., Michalske, T. A., Zavadil, K. R., J. Microelectromech. Syst. 14, 125 (2005).Google Scholar
11. Legrand, B., Rollier, A. S., Collard, D., Buchaillot, L., Appl. Phys. Lett. 88, (2006).Google Scholar
12. Maali, A., Hurth, C., Boisgard, R., Jai, C., Cohen-Bouhacina, T., Aimé, J.P., J. Appl. Phys. 97 (2005).Google Scholar