Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T00:57:40.507Z Has data issue: false hasContentIssue false

PbS/CdS Core/Shell Nanocrystals For Solution-Processed Colloidal Quantum Dot Solar Cells

Published online by Cambridge University Press:  30 December 2014

Darren C. J. Neo
Affiliation:
Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, United Kingdom.
Cheng Cheng
Affiliation:
Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, United Kingdom.
Hazel E. Assender
Affiliation:
Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, United Kingdom.
Andrew A. R. Watt
Affiliation:
Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, United Kingdom.
Get access

Abstract

An epitaxial shell of cadmium sulphide is grown on lead sulphide quantum dots in order to reduce the concentration of surface defects. Thin solid films of these core/shell materials are found to have low carrier concentrations due to effective surface passivation which reduces the number of dangling bonds. In this paper PbS/CdS is used as a quasi-intrinsic layer in p-i-n photovoltaic devices where PbS acts as the p-layer and ZnO the n-layer. By studying different permutations of these layers and the degree of PbS p-type doping by annealing we optimise fill factor and open-circuit voltage.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kramer, I. J.; Sargent, E. H. Colloidal Quantum Dot Photovoltaics: A Path Forward. ACS Nano 2011, 5, 85068514.CrossRefGoogle ScholarPubMed
Tang, J.; Sargent, E. H. Infrared Colloidal Quantum Dots for Photovoltaics: Fundamentals and Recent Progress. Adv. Mater. 2011, 23, 1229.CrossRefGoogle ScholarPubMed
Kramer, I. J.; Sargent, E. H. The Architecture of Colloidal Quantum Dot Solar Cells: Materials to Devices. Chem. Rev. 2014, 114, 863882.CrossRefGoogle ScholarPubMed
Ip, A. H.; Thon, S. M.; Hoogland, S.; Voznyy, O.; Zhitomirsky, D.; Debnath, R.; Levina, L.; Rollny, L. R.; Carey, G. H.; Fischer, A.; et al. . Hybrid Passivated Colloidal Quantum Dot Solids. Nat. Nanotechnol. 2012, 7, 577582.CrossRefGoogle ScholarPubMed
Lan, X.; Masala, S.; Sargent, E. H. Charge-Extraction Strategies for Colloidal Quantum Dot Photovoltaics. Nat. Mater. 2014, 13, 233240.CrossRefGoogle ScholarPubMed
Chuang, C.-H. M.; Brown, P. R.; Bulović, V.; Bawendi, M. G. Improved Performance and Stability in Quantum Dot Solar Cells through Band Alignment Engineering. Nat. Mater. 2014.CrossRefGoogle ScholarPubMed
Guyot-Sionnest, P. Electrical Transport in Colloidal Quantum Dot Films. J. Phys. Chem. Lett. 2012, 3, 11691175.CrossRefGoogle ScholarPubMed
Moreels, I.; Fritzinger, B.; Martins, J. C.; Hens, Z. Surface Chemistry of Colloidal PbSe Nanocrystals. J. Am. Chem. Soc. 2008, 130, 1508115086.CrossRefGoogle ScholarPubMed
Turyanska, L.; Elfurawi, U.; Li, M.; Fay, M. W.; Thomas, N. R.; Mann, S.; Blokland, J. H.; Christianen, P. C. M.; Patanè, A. Tailoring the Physical Properties of Thiol-Capped PbS Quantum Dots by Thermal Annealing. Nanotechnology 2009, 20, 315604.CrossRefGoogle ScholarPubMed
Neo, D. C. J.; Cheng, C.; Stranks, S. D.; Fairclough, S. M.; Kim, J. S.; Kirkland, A. I.; Smith, J. M.; Snaith, H. J.; Assender, H. E.; Watt, A. A. R. Influence of Shell Thickness and Surface Passivation on PbS/CdS Core/Shell Colloidal Quantum Dot Solar Cells. Chem. Mater. 2014, 140606160802003.CrossRefGoogle Scholar
Hines, M. A.; Scholes, G. D. Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution. Adv. Mater. 2003, 15, 18441849.CrossRefGoogle Scholar
Neo, M. S.; Venkatram, N.; Li, G. S.; Chin, W. S.; Ji, W. Synthesis of PbS/CdS Core−Shell QDs and Their Nonlinear Optical Properties. J. Phys. Chem. C 2010, 114, 1803718044.CrossRefGoogle Scholar
Pacholski, C.; Kornowski, A.; Weller, H. Self-Assembly of ZnO: From Nanodots to Nanorods. Angew. Chem. Int. Ed Engl. 2002, 41, 11881191.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Zhao, H.; Chaker, M.; Wu, N.; Ma, D. Towards Controlled Synthesis and Better Understanding of Highly Luminescent PbS/CdS Core/shell Quantum Dots. J. Mater. Chem. 2011, 21, 8898.CrossRefGoogle Scholar
Choi, M.-J.; Oh, J.; Yoo, J.-K.; Choi, J.; Sim, D. M.; Jung, Y. S. Tailoring of the PbS/metal Interface in Colloidal Quantum Dot Solar Cells for Improvements of Performance and Air Stability. Energy Environ. Sci. 2014, 7, 3052.CrossRefGoogle Scholar
Cheng, C.; Lee, M. M.; Noel, N. K.; Hughes, G. M.; Ball, J. M.; Assender, H. E.; Snaith, H. J.; Watt, A. A. R. Polystyrene Templated Porous Titania Wells for Quantum Dot Heterojunction Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 1424714252.CrossRefGoogle ScholarPubMed
Kim, G.-H.; Walker, B.; Kim, H.-B.; Kim, J. Y.; Sargent, E. H.; Park, J.; Kim, J. Y. Inverted Colloidal Quantum Dot Solar Cells. Adv. Mater. 2014, 26, 33213327.CrossRefGoogle ScholarPubMed
Gao, J.; Jeong, S.; Lin, F.; Erslev, P. T.; Semonin, O. E.; Luther, J. M.; Beard, M. C. Improvement in Carrier Transport Properties by Mild Thermal Annealing of PbS Quantum Dot Solar Cells. Appl. Phys. Lett. 2013, 102, 043506.CrossRefGoogle Scholar
Ko, D.-K.; Brown, P. R.; Bawendi, M. G.; Bulović, V. P-I-N Heterojunction Solar Cells with a Colloidal Quantum-Dot Absorber Layer. Adv. Mater. 2014, 26, 48454850.CrossRefGoogle ScholarPubMed