Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T22:08:04.541Z Has data issue: false hasContentIssue false

Patterning Organic Fluorescent Molecules with SAM Patterns

Published online by Cambridge University Press:  23 June 2011

Qiong Wu
Affiliation:
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
Juanyuan Hao
Affiliation:
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
Shoulei Shi
Affiliation:
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
Weifeng Wang
Affiliation:
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
Nan Lu*
Affiliation:
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
*
Get access

Abstract

We report a low-cost and high-throughput method to fabricate large-area light emitting pattern via thermal evaporation of organic molecules on the patterned self-assembled monolayer of homogenous 3-aminopropyltrimethoxysilane. This method is based on the selective deposition of the organic light emitting molecules on the template of self-assembled monolayer (SAM), which is patterned with nanoimprinting lithography. The selectivity can be controlled by adjusting the design of the pattern, the storage duration and the substrate temperature. The deposition selectivity of the molecules may be caused by the different binding energy of the molecules with the SAM and the substrate surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913915.Google Scholar
2. Slyke, S. A. V.; Chen, C. H.; Tang, C. W. Appl. Phys. Lett. 1996, 69, 21602162.Google Scholar
3. Tian, P. F.; Bulovic, V.; Burrows, P. E.; Gu, G.; Forrest, S. R. J. Vac. Sci. Technol. A. 1999, 17, 29752981.Google Scholar
4. Briseno, A. L.; Aizenberg, J.; Han, Y.-J.; Penkala, R. A.; Moon, H.; Lovinger, A. J.; Kloc, C.; Bao, Z. J. Am. Chem. Soc. 2005, 127, 1216412165.Google Scholar
5. Lu, N.; Chen, X.; Molenda, D.; Naber, A.; Fuchs, H.; Talapin, D. V.; Weller, H.; Muller, J. M.; Lupton, J. M.; Feldmann, J.; Rogach, A. L.; Chi, L. Nano. Lett. 2004, 4, 885888.Google Scholar
6. Chen, J.; Liao, W.-S.; Chen, X.; Yang, T.; Wark, S. E.; Son, D. H.; Batteas, J. D.; Cremer, P. S. ACS Nano 2009, 3, 173180.Google Scholar
7. Wang, W. C.; Zhong, D. Y.; Zhu, J.; Kalischewski, F.; Dou, R. F.; Wedeking, K.; Wang, Y.; Heuer, A.; Fuchs, H.; Erker, G.; Chi, L. F. Phy. Rev. Lett. 2007, 98, 225504(1–4).Google Scholar
8. Hao, J.; Lu, N.; Wu, Q.; Hu, W.; Chen, X.; Zhang, H.; Wu, Y.; Wang, Y.; Chi, L. Langmuir 2008, 24, 53155318.Google Scholar
9. Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. Science 1996, 272, 8587.Google Scholar
10. Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. J. Vac. Sci. Technol. B. 1996, 14, 41294133.Google Scholar
11. Chou, S. Y.; Krauss, P. R.; Zhang, W.; Guo, L.; Zhuang, L. J. Vac. Sci. Technol. B. 1997, 15, 28972904.Google Scholar
12. Xu, T.; Lu, R.; Jin, M.; Qiu, X.; Xue, P.; Bao, C.; Zhao, Y. Tetrahedron Letters 2005, 46, 68836886.Google Scholar