Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T23:09:02.773Z Has data issue: false hasContentIssue false

Passivation by N Implantation of the SiO2/SiC Acceptor Interface States: Impact on the Oxide Hole Traps and the Gate Oxide Reliability

Published online by Cambridge University Press:  01 February 2011

Antonella Poggi
Affiliation:
poggi@bo.imm.cnr.it, CNR-IMM, Bologna, Bologna, Italy
Francesco Moscatelli
Affiliation:
moscatelli@bo.imm.cnr.it, CNR-IMM, Bologna, Bologna, Italy
Sandro Solmi
Affiliation:
solmi@bo.imm.cnr.it, CNR-IMM, Bologna, Bologna, Italy
Roberta Nipoti
Affiliation:
nipoti@bo.imm.cnr.it, CNR-IMM, Bologna, Bologna, Italy
Get access

Abstract

This study compares p-MOS capacitors fabricated on N+ implanted and on virgin 4H-SiC. The former sample have N at the SiO2/SiC interface, the latter have not. To investigate the presence of deep and shallow hole traps at the SiO2/SiC interface, high frequency and quasi-static capacitance voltage measurements under dark have been compared for bias sweeping from accumulation to depletion and from depletion to accumulation, the latter after white light illumination. The presence of N has an effect on the density of the shallow donor like traps but none effect on the deep ones. The positive charge trapped in the oxide and/or at the oxide interface after equivalent tunneling hole injection have been compared and are equivalent. Time dependent dielectric breakdown tests have been compared too. The oxide grown on N+implanted SiC broken at lower electric field.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Jamet, P., Dimitrijev, S., and Tanner, P., J. Appl. Phys. 90, 5058 (2001).Google Scholar
2 Chung, G. Y., Tin, C. C., Williams, J. R., McDonald, K., Chanana, R. K., Weller, R. A., Pantelides, S. T., Feldman, L. C., Holland, O. W., Das, M. K., and Palmur, J. W., IEEE Electron Device Lett. 22, 176 (2001).Google Scholar
3 Lipkin, L. A., Das, M. K., and Palmour, J. W., Mater, Sci. Forum 389–393, 985 (2002).Google Scholar
4 Pensl, G., Beljakowa, S., Frank, T., Gao, K., Speck, F., Seyller, T., Ley, L., Ciobanu, F., Afanas'ev, V., Stesmans, A., Kimoto, T., and Schöner, A., Phys. Suatus Solidi B 245, 1378 (2008).Google Scholar
5 Poggi, A., Moscatelli, F., Hijikata, Y., Solmi, S., and Nipoti, R., Microelectron. Eng. 84, 2804 (2007)Google Scholar
6 Moscatelli, F., Poggi, A., Solmi, S., and Nipoti, R., IEEE Trans. Electron Devices 55, 961 (2008).Google Scholar
7 Inoue, N., Kimoto, T., Yano, H., and Matsunami, H., Jpn. J. Appl. Phys. 36, L1430 (1997)Google Scholar
8 Chanana, R. K., McDonald, K., Ventra, M. Di, Pantelides, S. T., Feldman, L. F., Chung, G. Y., Tin, C. C., Williams, J. R., and Weller, R. A., Appl. Phys. Lett. 77, 2560 (2000).Google Scholar
9 Rozen, J., Dhar, S., Dixit, S. K., Afanase'ev, V. A., Roberts, F. O., Dang, H. L., Wang, S., Pantelides, S. T. Williams, J. R., and Feldman, L. C., J. Appl. Phys. 103, 124513 (2008).Google Scholar
10 Afanas'ev, V. V., and Stesmans, A., Appl. Phys. Lett. 77, 2024 (2000).Google Scholar