Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T04:05:10.296Z Has data issue: false hasContentIssue false

Particle Size Characterization of Commercial Raw Materials and Graphite nanoparticles of a Refractory Bricks Mix of the System Al2O3-SiC-C

Published online by Cambridge University Press:  20 December 2012

A. M. Paniagua*
Affiliation:
Escuela Superior de Física y Matemáticas Edificio 9, U.P. Adolfo López Mateos, Col. San Pedro Zacatenco, C.P. 07730 D. F., México.
J. Martinez
Affiliation:
Escuela Superior de Física y Matemáticas Edificio 9, U.P. Adolfo López Mateos, Col. San Pedro Zacatenco, C.P. 07730 D. F., México.
V. Mauro
Affiliation:
Escuela Superior de Física y Matemáticas Edificio 9, U.P. Adolfo López Mateos, Col. San Pedro Zacatenco, C.P. 07730 D. F., México.
E. Diaz
Affiliation:
Escuela Superior de Física y Matemáticas Edificio 9, U.P. Adolfo López Mateos, Col. San Pedro Zacatenco, C.P. 07730 D. F., México.
*
Get access

Abstract

In this work was studied the partial substitution in the design of a refractory mix of the fine crystalline graphite for prefabricate nanoparticles of the seam source of graphite, improving the refractory properties of the material, getting a better resistant to the chemical attack by the slag and steel liquid metal. The raw materials and nanoparticles of crystalline graphite were characterized by X-ray diffraction (XRD), Sherrer equation, and scanning electron microscopy (SEM). The nanoparticles size determines the crystalline of the graphite used in the mixes obtained after different steps of mechanic milling. The nanoparticles of materials were added to the mixes in different proportions. The commercial raw materials used for this investigation were: commercial silicon carbide high purity (97% SiC), calcined bauxite (85% Al2O3), alpha calcined alumina, and crystalline graphite (94% C). Additionally, six different sizes of graphite nanoparticles were selected. The particle size of the initial commercial graphite was 0.044mm and the final nanoparticles obtained in this investigation by mechanic milling was 18 nm. The measurement of the particle size of the nanoparticles was made by the Scherrer equation, XRD and SEM.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Karamian, E. Monshi, A., Bataille, A., Zadhoush, A., J. of the European Ceramic Society 31,14, 26772685, (2011).CrossRefGoogle Scholar
Tamura, S., Matsui, T., Ochiai, T., Goto, K.; Technological philosophy and perspective of nanotech refractories. Nippon Steel Technical Report 98,1828, (2008).Google Scholar
Sugita, K.; Historical overview of refractory technology in the steel industry. Nippon Steel Technical Report 98, 817, (2008).Google Scholar
Camelli, S., Rimoldi, M.J., Marinelli, P., Mirabelli, J.J.; Evaluation of different wear mechanism of Al2O3-SiC-C bricks used in torpedo ladle.7 th IAS Ironmaking Conference. Campana, Buenos Aires, Argentina, 192201, (2009).Google Scholar
Schärfl, W., Aneziris, C.G., Klippel, U., Roungos, V; Properties and processing of shaped alumosilicate-carbon composites for application in shaft furnaces. http://ekw-feuerfest.de/ Google Scholar
Ito, S., Inuzuka, T; Technical Development of Refractories for Steelmaking processes. Nippon Steel Technical Report (98), 6369, (2008).Google Scholar
Miñoz, V., Rohr, G.A., Tomba-Martinez, A.G., Cavalieri, A.L; Aspectos experimentales de la determinación de curvas esfuerzo-deformación a alta temperatura y en atmosfera controlada: Refractarios Al2O3-MgO-C. Boletín de la Sociedad Española de Cerámica y Vidrio 50,3, 125134, (2011).CrossRefGoogle Scholar
Hassan-Amin, M., Amin-Ebrahimabadi, M., Reza-Rahimipour, M., Journal of Nanomaterials, 325674325678, (2009).Google Scholar
Ruan, G., Dong, Y., Zhang, Z., Zhou, S., Rare Metals, 501505, (2011).CrossRefGoogle Scholar
Chen Feng, C., Bernard, A. B., William, L.E., Journal of the American Ceramic Society, 31773188, (1998).CrossRefGoogle Scholar
Uchida, S., Ichikawa, K., Niihara, K., Journal of the American Ceramic Society, 29102916 (1998).Google Scholar
Lee, W.E., Argent, B.B., Zhang, S., Journal of the American Ceramic Society, 29112918, (2002).Google Scholar