Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T14:00:44.994Z Has data issue: false hasContentIssue false

The Paramagnetic Correlation Length of Mn Thin Films

Published online by Cambridge University Press:  15 February 2011

D. N. MclLroy
Affiliation:
Dept. of Physics, University of Nebraska-Lincoln, Lincoln, NE 68588-0111
P. A. Dowben
Affiliation:
Dept. of Physics, University of Nebraska-Lincoln, Lincoln, NE 68588-0111
Get access

Abstract

We have utilized Ginzberg-Landau mean field theory to analyze the branching ratio and soft X-ray magnetic circular dichroism measurements of the L3 and L2 adsorption edges of thin Mn overlayers on ferromagnetic fcc Co(001) at room temperature. We have determined a short range magnetic correlation of 4.25Å and that the long range magnetic magnetic order has a decay length of 1.29Å. These results indicate that the first monolayer of Mn ferromagnetically couple with the Co substrate. The paramagnetic Mn layer exhibits short range magnetic order, but lacks long range magnetic order. Due to the exponential decrease of both the branching ratio and dichroism signals, we have concluded that the magnetization of the Mn overlayer is substrate induced.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dowben, P. A., LaGraffe, D., Li, Dongqi, Miller, A., Zhang, L., Dottl, L., and Onellion, M., Phys. Rev. B 43,3171 (1991).Google Scholar
2. Miller, A. and Dowben, P. A., J. Phys.: Condens. Matter 5, 5459 (1993).Google Scholar
3. Mathon, J., J. Phys. F: Met. Phys. 16, L217 (1986).Google Scholar
4. Mathon, J., J. Phys. F: Met. Phys. 16, 669 (1986).Google Scholar
5. Mathon, J. and Bergmann, G., J. Phys. F: Met. Phys. 16, 887 (1986).Google Scholar
6. Binder, K. and Hohenberg, P. C., Phys. Rev. B 6, 3461 (1972).Google Scholar
7. Edwards, D. M., Mathon, J., and Wohlfarth, E. P., J. Phys. F: Met. Phys. 5, 1619 (1975).Google Scholar
8. Edwards, D. M., Mathon, J., and Wohlfarth, E. P., J. Phys. F: Met. Phys. 3, 161 (1973).Google Scholar
9. Coutinho, S., Edwards, D. M., and Mathon, J., J. Phys. F: Met. Phys. 143,1143 (1983).Google Scholar
10. Camley, R. E., Phys. Rev. B 35, 3608 (1987).Google Scholar
11. Fishman, F., Schwabl, F., and Schwenk, D., Phys. Lett. 121A, 192 (1987).Google Scholar
12. Camley, R. E. and Tilley, D. R., Phys. Rev. B 37, 3413 (1988).Google Scholar
13. Schwenk, D., Fishman, F., and Schwabl, F., Phys. Rev. B 38, 11618 (1988).Google Scholar
14. O'Brien, W. L. and Tonner, B. P., Phys. Rev. B 5, 2963 (1994).Google Scholar
15. Gradmann, U. and Bergholz, R., Phys. Rev. Lett. 52, 771 (1984).Google Scholar
16. Domb, C. and Green, M. S., Phase Transitions and Critical Phenomena (Academic, New York, 1976), Vol.5A.Google Scholar
17. Liftshitz, E. M. and Pitaevski, L. P., Statistical Physics, Part 2 (Pergamon,Oxford, 1980), p. 182.Google Scholar
18. Bl¨gel, S., Weinert, M., and Dederichs, P. H., Phys. Rev. Lett. 60,1077 (1988); S. Blögel, B. Dittler, R. Zeller, and P. H. Dederichs, Appl. Phys. A 49, 547 (1989).Google Scholar
19. Wu, R., Li, C., and Freeman, A. J., J. Magn. and Magn. Mater. 99, 71 (1991).Google Scholar
20. Miura, K., Kimura, H., Imanaga, S., and Hayafuji, Y., J. Appl. Phys. 72, 4826 (1992).Google Scholar
21. Kim, S. K., Kang, J. S., Jeong, J. I., Koo, Y. M., Shin, H. J., and Lee, Y. P., J. Appl. Phys. 72, 4986 (1992); Y. P. Lee, S. K. Kim, J. S. Kang, J. I. Jeong, J. H. Hong, and H. J. Shin, J. Magn. and Magn. Mater. 126, 316 (1993).Google Scholar
22. Niziol, S., Bombik, A., Bazela, W., Szytula, A., and Fruchart, D., J. Magn. and Magn. Mater. 27, 281 (1982).Google Scholar
23. We have used the calculated crystal-field variations Tb/Ni(110) from Ref. 2 in order to obtain an idea of what reasonable variations we might expect for Mn/Co(001).Google Scholar
24. Shull, C. G. and Wilkinson, M. K., Rev. Mod. Phys. 23, 100 (1953).Google Scholar
25. Nagasawa, H. and Uchinami, M., Phys. Lett. 42A, 463 (1973).Google Scholar
26. McFeely, F. R., Kowalczyk, S. P., Ley, L., and Shirley, D. A., Solid State Commun. 15, 1051 (1974).Google Scholar
27. Hauser, J. J., Chen, H. S., and Waszczak, J. V., Phys. Rev. B 33, 3577 (1986).Google Scholar
28. Machado, F. L. A., Clark, W. G., Azevedo, L. J., Yang, D. P., Hines, W. A., Budnick, J. I., and Quan, M. X., Solid State Commun. 61,145 (1987).Google Scholar
29. Edagawa, K., Ino, H., Nasu, S., Kimura, K., Takeuchi, S., Shinjo, T., Koga, K., Shimizu, T., and Yasuoka, H., J. Phys. Soc. Jpn 56, 2629 (1987).Google Scholar
30. Bellisent, R., Hippert, F., Monod, P., and Vigneron, F., Phys. Rev. B 36, 5540 (1987).Google Scholar
31. McHenry, M. E., Vvedensky, D. D., Eberhart, M. E., and O'Handley, R. C., Phys. Rev. C 37, 10887 (1988).Google Scholar
32. Goedkoop, J. B., PhD Thesis, Katholiek Universitiet te Nijmegen (1989); J. B. Goedkoop, M. Grioni, and J. C. Fuggle, Phys. Rev. B 43, 1179 (1991).Google Scholar