Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T21:55:30.940Z Has data issue: false hasContentIssue false

Oxygen Lattice Distortions and U Oxidation State in UO2+x Fluorite Structures

Published online by Cambridge University Press:  01 February 2011

Lionel Desgranges
Affiliation:
lionel.desgranges@cea.fr, CEA, DEN/DEC, Saint-Paul lez Durnace, France
Gianguido Baldinozzi
Affiliation:
gianguido.baldinozzi@ecp.fr, CNRS-Ecole Centrale Paris, SPMS, Matériaux fonctionnels pour l'énergie, Châtenay-Malabry, France
Get access

Abstract

The structural changes induced by the changes of the uranium oxidation state in the ideal fluorite lattice of pure UO2 are discussed. Experimental results evidence strong distortions of the oxygen sub-lattice due to dynamic (at high temperature) or static (at low temperature) fluctuations of the local charges in the cationic sublattice. These changes in the oxidation state are often described using the Vegard’s law because a linear dependence of lattice parameter is observed over a wide range of compositions. Nevertheless, an ideal solid solution model cannot explain this behavior where the elastic effects are directly related to the ionic radii of the cations. Strong evidence is provided that enthalpy effects are relevant in these systems and that they are directly associated with the local structural changes observed during neutron scattering experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Riella, H.G., Durazzo, M., Hirata, M., Nogueira, R.A., J.Nucl. Mater. 178, 204 (1991).Google Scholar
2. Herrero, M. P., Rojas, R. M., Solid, J. State Chem., 73, 536543 (1988).Google Scholar
3. Weitzel, H. and Keller, C., J.Solid State Chem., 13, 136141 (1975).Google Scholar
4. Kapoor, K., Ramana Rao, S.V., Sheela, , Sanyal, T., Singh, A., J. Nucl. Mat. 321, 331334 (2003).Google Scholar
5. Kato, M. and Konashi, K., J Nucl.Mat. (2009) doi:10.1016/j.jnucmat.2008.09.037.Google Scholar
6. Ruello, P. & al., J.Am. Ceram.Soc. 88, 604 (2005).Google Scholar
7. Ruello, P., Desgranges, L., Baldinozzi, G., Calvarin, G., Hansen, T., Petot-Ervas, G., Petot, C., Journal of Phys.Chem. Solids 66, 823831 (2005).Google Scholar
8. Shannon, R. D. Acta Cryst. A32, 751 (1976).Google Scholar
9. Hutchings, M.T. J.Chem. Soc., Faraday Trans. 2, 83, 10831103 (1987).Google Scholar
10. Bevan, D.J.M., Grey, I.E., Willis, B. T. M., J.Solid State Chem. 61, 17 (1986).Google Scholar
11. Baldinozzi, G., Rousseau, G., Desgranges, L., Nièpce, J.C., Bérar, J.F., Mat.Res. Soc.Symp. Proceedings 802 38 (2003).Google Scholar
12. Cooper, R.I. and Willis, B.T.M., Acta Cryst. A 60, 322325 (2004).Google Scholar
13. Allen, G.C. and Holmes, N.R., J.Nucl. Mater. 223, 231 (1995).Google Scholar
14. Hyde, B.G., Acta Cryst A 27, 617621 (1971).Google Scholar
15. Yasunaga, K. et al., Nucl. Instr. and Meth.in Phys.Res. B 266, 28772881 (2008).Google Scholar