Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T23:37:03.775Z Has data issue: false hasContentIssue false

Oxygen Effects on Plastic Flow During Growth of Dendritic Web Si

Published online by Cambridge University Press:  28 February 2011

J. A. Spitznagel
Affiliation:
Westinghouse R&D Center, 1310 Beulah Road, Pittsburgh, PA 15235
R. G. Seidensticker
Affiliation:
Westinghouse R&D Center, 1310 Beulah Road, Pittsburgh, PA 15235
S. Y. Lien
Affiliation:
Westinghouse R&D Center, 1310 Beulah Road, Pittsburgh, PA 15235
R. H. Hopkins
Affiliation:
Westinghouse R&D Center, 1310 Beulah Road, Pittsburgh, PA 15235
Get access

Abstract

The possible effects of oxygen on plastic flow of Si ribbons during growth by the, dendritic web process are described. Cooling rates preclude homogeneous nucleation and growth of detectable SiOx precipitates. Calculated resolved shear stresses on {111} <110> slip systems arising from thermoelastic strains exhibit periodic oscillations in sign and magnitude. The dwell times at elevated temperatures corresponding to zero or low stress periods accompanying such sign reversals are shown to be sufficiently long to permit decoration and locking of dislocations by oxygen atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[ 1] Seidensticker, R. G., in CRYSTALS 8. Grabmaier, H., ed., Springer-VERLAG New York (1982) p. 145.Google Scholar
[ 2] Sumino, K., Harada, H. and Yonenaga, I., Jpn J. Appl. Phys. 19, L49 (1980).Google Scholar
[ 3] Hu, S. M., J. Vac. Sci. Technol. 14, 17 (1977).Google Scholar
[ 4] Patel, J. in Semiconductor Silicon 1977, (Electrochem Soc. Princeton, NJ) (1977).Google Scholar
[ 5] Meier, D. L., Greggi, J., Rohatgi, A., O.Keeffe, T. W., Rai-Choudhury, P., Campbell, R. B., and Mahajan, S., 18th IEEE Photovoltaic Specialists Conf., Las Vegas, NV (1985).Google Scholar
[ 6] Jordan, A. S., Caruso, R. and Von Neida, A. R., The Bell System Technical Journal, Vol.59, No. 4, p. 593, April (1980).Google Scholar
[ 7] Sumino, K. and Yonenaga, I., Jpn. J. Appl. Phys. 20, L685 (1981).Google Scholar
[ 8] Haasen, P., Z. Phys. 167, 461 (1962).Google Scholar
[ 9] Dillon, O., University of Kentucky, unpublished.Google Scholar
[10] Schroter, W., Brion, H. G. and Siethoff, H., J. Appl. Phys. 54, 1816 (1983).Google Scholar
[11] Sumino, K. in Semiconductor Silicon 1981, ed. Huff, H. R., Kriegler, R., and Takeishi, Y., (Electrochem. Soc. Princeton, NJ), (1981) p. 208.Google Scholar
[12] Sumino, K., in Defects in Semiconductors II, ed. Mahajan, S. and Corbett, J. W., MRS Proc. Vol.14, North Holland, (1983) p. 307.Google Scholar
[13] Ast, D. G., “Electrical, Structural and Chemical Characterization of Si-Sheet Material,” Cornell University, Dept. of Materials Science and Engineering, Annual Report, Jet Propulsion Laboratory Contract No. 956046 (31 August 1985).Google Scholar
[14] Hrostowski, H. J. and Kaiser, R. H., J. Phys. Chem. Solids 9, 214 (1959).CrossRefGoogle Scholar
[15] Koguchi, M., Yonega, I. and Sumino, K. G., Jpn. J. Appl. Phys. 21, L411 (1982).CrossRefGoogle Scholar
[16] Spitznagel, J. A. and Seidensticker, R. G., unpublished.Google Scholar
[17] Bullough, R. and Newman, R. C., Progress in Semiconductors 5, (Heywood, London) (1962) p. 101.Google Scholar
[18] Mikkelsen, J. C. Jr, Appl. Phys. Lett. 40, 336 (1982).Google Scholar