Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:36:35.248Z Has data issue: false hasContentIssue false

Oxidation Kinetics of Yba2Cu3OT7-x Thin Films in the Presence of Atomic Oxygen and Molecular Oxygen by In-Situ Resistivity Measurement

Published online by Cambridge University Press:  15 February 2011

K. Yamamoto
Affiliation:
Central Reserch Laboratories, Kanegafuchi Chemical Industry, Co. Ltd. 2-8-1-chome, Yoshida-cho, Hyogo-ku, Kobe652, Japan
B. M. Lairson
Affiliation:
Stanford University, Stanford CA94305
J. C. Bravman
Affiliation:
Stanford University, Stanford CA94305
T. H. Geballe
Affiliation:
Stanford University, Stanford CA94305
Get access

Abstract

The kinetics of oxidation in Yba2Cu3O7-x thin films in the presence of molecular and atomic oxygen ambients have been studied. The resistivity of c-axis, a-axis, and mixed a+c axis oriented films, deposited in-situ by off-axis magnetron sputtering, was measured as a function of time subsequent to a change in the ambient conditions. The oxidation process is shown to be thermally activated and can be characterized by a diffusion model with an activation energy which varies from approximately 1.2eV in the presence of molecular oxygen to 0.6eV for a flux of 2×1015 oxygen atoms/cm2sec. In both cases, diffusivity is found to be insensitive to oxygen stoichiometry, but the rate of oxidation is found to be sensitive to the microstructure and orientation of the films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Tu, K.N., Yeh, N.C., Park, S.I., and Tsuei, C.C., Phys Rev. B, 39, 304(1989)Google Scholar
(2) Kishio, K., Suzuki, K., Hasegawa, T., Yamamoto, T. and Kitazawa, K., J. Solid State Chemistry, 182, 192 (1989).Google Scholar
(3) Rothman, S. J., Roubort, J. L., and Baker, J. E., Phys. Rev.B, 40, 13(1989).Google Scholar
(4) Rothman, S. J., Roubort, J. L., Liu, J.Z., Downey, J.W., Thompson, L. J., Fang, Y., Shi, D., Baker, J.E., Rice, J.P., Ginsberg, D.M., Han, P.D., and Payne, D.A., Proceedings of the 1989 TMS Fall Meeting Symposium on Atomic Migration and Defects in Materials.Google Scholar
(5) Tamura, H., Yoshida, A., Morohashi, S., and Hasuo, S., Appl. Phys. Lett. 53,(1988) 618.Google Scholar
(6) Missert, N., Hammond, R. H., Mooij, J. E., Matijasevic, V., Rosenthal, P., Geballe, T. H., Kapitulnik, A., Beasley, M. R., Laderman, S., Lu, C., Garwin, E. and Barton, R., IEEE Trans. Magn. MAG 25, 2418 (1989).Google Scholar
(7) Aida, T., Tsukamoto, A., Imagawa, K., Fukazawa, T., Saito, S., Shindo, K., Takagi, K. and Miyauchi, K., Jpn. J. Appl. Phys. 28, L635 (1989).Google Scholar
(8) Hellman, E.S., Schlom, D.G., Missert, N., Char, K., Harris, J. S. Jr., Beasley, M.R., Kapitulnik, A., Geballe, T.H., Eckstein, J. N., Weng, S.L. and Webb, C., J. Vac. Sci. Technol. B6, 799(1988).Google Scholar
(9) Kwo, J., Hong, M., Trevor, D. J., Fleming, R. M., White, A. E., Mannaerts, J. P., Farrow, R. C., Kortan, A. R. and Short, K. T., Physica C 162–164, 623 (1989).Google Scholar
(10) Eom, C. B., Sun, J. Z., Yamamoto, K., Marshall, A. F., Luther, K. E., Laderman, S. S. and Geballe, T. H., Appl. Phys. Lett., 54, 595 (1989).Google Scholar
(11) Eom, C.B., et al., Physica C 171(1990)354.Google Scholar
(12) Yamamoto, K., et al., to be published in J. Vac Sci. Tech.Google Scholar
(13) Matijasevic, V., Garwin, E.L., Hammond, R.H., Rev. Sci. Instrum. 61,1747(1990).Google Scholar
(14) Yamamoto, K., Lairson, B.M., Bravman, J.C. and Geballe, T.H., to be published in J.Appl. Phys.Google Scholar
(15) Crank, J., “The Mathematics of Diffusion,” Clarendon, Oxford, 1975.Google Scholar
(16) Streiffer, S.K., Lairson, B.M., Eom, C.B., Bravman, J.C., and Geballe, T.H., Proc. MRS 183, 363(1990)Google Scholar