Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T23:52:29.475Z Has data issue: false hasContentIssue false

Oxidation Dynamics of a Chain of Aluminum Nanoparticles

Published online by Cambridge University Press:  15 February 2013

Adarsh Shekhar
Affiliation:
Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
Weiqiang Wang
Affiliation:
Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
Richard Clark
Affiliation:
Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
Rajiv K. Kalia
Affiliation:
Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA
Aiichiro Nakano
Affiliation:
Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA
Priya Vashishta
Affiliation:
Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA
Get access

Abstract

Multimillion-atom molecular dynamics simulations are used to investigate burning behavior of a chain of three alumina-coated aluminum nanoparticles (ANPs), where particles one and three are heated above the melting temperature of pure aluminum. The mode and mechanism behind the heat and mass transfer from the hot ANPs (particles one and three) to the middle, cold ANP (particle two) are studied. The hot nanoparticles oxidize first, after which hot Al atoms penetrate into the cold nanoparticle. It is also found that due to the penetration of hot Al atoms, the cold nanoparticle oxidizes at a faster rate than in the initially heated nanoparticles. The calculated speed of penetration is found to be 54 m/s, which is within the range of experimentally measured flame propagation rates. As the atoms penetrate into the central ANP, they maintain their relative positions. The atoms from the shell of the central ANP form the first layer, which is followed by the atoms from the shell of the outer ANP making the second layer and lastly the atoms from the core of the outer ANPs form the third layer. In addition to heating the central ANP by convection, the ejected hot Al atoms from the outer ANPs initiate exothermic oxidation reactions inside the central ANP, leading to further heating within the central ANP. During 1 ns, all three ANPs fuse together, forming a single ellipsoidal aggregate.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Phung, X., Groza, J., Stach, E. A., Williams, L. N. and Ritchey, S. B., Materials Science and Engineering A 359(1), 261 (2003).10.1016/S0921-5093(03)00348-4CrossRefGoogle Scholar
Meda, L., Marra, G., Galfetti, L., Severini, F. and De Luca, L., Materials Science and Engineering: C 27(5–8), 1393 (2007).10.1016/j.msec.2006.09.030CrossRefGoogle Scholar
Gromov, A., Ilyin, A., Forter-Barth, U. and Teipel, U., Propellants Explosives Pyrotechnics 31(5), 401 (2006).10.1002/prep.200600055CrossRefGoogle Scholar
Ilyin, A., Gromov, A., An, V., Faubert, F. O., de Izarra, C., Espagnacq, A. and Brunet, L., Propellants Explosives Pyrotechnics 27(6), 361 (2002).10.1002/prep.200290006CrossRefGoogle Scholar
Sarawadekar, R. G. and Agrawal, J. P., Defence Science Journal 58(4), 486 (2008).10.14429/dsj.58.1669CrossRefGoogle Scholar
De Luca, L., Galfetti, L., Severini, F., Meda, L., Marra, G., Vorozhtsov, A., Sedoi, V. and Babuk, V., Combustion, explosion, and shock waves 41(6), 680 (2005).CrossRefGoogle Scholar
Dreizin, E. L., Combustion and Flame 105(4), 541 (1996).10.1016/0010-2180(95)00224-3CrossRefGoogle Scholar
Armstrong, R. W. and Elban, W. L., Materials Science and Technology 22(4), 381 (2006).10.1179/174328406X84049CrossRefGoogle Scholar
Asay, B. W., Son, S. F., Busse, J. R. and Oschwald, D. M., Propellants, Explosives, Pyrotechnics 29(4), 216 (2004).10.1002/prep.200400049CrossRefGoogle Scholar
Watson, K. W., Pantoya, M. L. and Levitas, V. I., Combustion and Flame 155(4), 619 (2008).10.1016/j.combustflame.2008.06.003CrossRefGoogle Scholar
Abouali, O. and Falahatpisheh, A., Heat and Mass Transfer 46(1), 15 (2009).10.1007/s00231-009-0540-7CrossRefGoogle Scholar
Alavi, S., Mintmire, J. W. and Thompson, D. L., The Journal of Physical Chemistry B 109(1), 209 (2004).10.1021/jp046196xCrossRefGoogle Scholar
Campbell, T., Kalia, R. K., Nakano, A., Vashishta, P., Ogata, S. and Rodgers, S., Phys Rev Lett 82(24), 4866 (1999).10.1103/PhysRevLett.82.4866CrossRefGoogle Scholar
Hasnaoui, A., Politano, O., Salazar, J. M., Aral, G., Kalia, R. K., Nakano, A. and Vashishta, P., Surf Sci 579(1), 47 (2005).10.1016/j.susc.2005.01.043CrossRefGoogle Scholar
Puri, P. and Yang, V., The Journal of Physical Chemistry C 111(32), 11776 (2007).10.1021/jp0724774CrossRefGoogle Scholar
Armstrong, R. W., Baschung, B., Booth, D. W. and Samirant, M., Nano Letters 3(2), 253 (2003).10.1021/nl025905kCrossRefGoogle Scholar
Hahma, A., Gany, A. and Palovuori, K., Combustion and Flame 145(3), 464 (2006).10.1016/j.combustflame.2006.01.003CrossRefGoogle Scholar
Wen, D. S., Zhang, L. and He, Y. R., Heat and Mass Transfer 45(8), 1061 (2009).10.1007/s00231-009-0479-8CrossRefGoogle Scholar
Clark, R., Ph.D. dissertation, University of Southern California, 2010.Google Scholar
Levitas, V. I., Combustion and Flame 156(2), 543 (2009).10.1016/j.combustflame.2008.11.006CrossRefGoogle Scholar
Levitas, V. I., Pantoya, M. L. and Dikici, B., Appl Phys Lett 92(1), 011921 (2008).10.1063/1.2824392CrossRefGoogle Scholar
Levitas, V. I., Pantoya, M. L. and Watson, K. W., Appl Phys Lett 92(20), 201917 (2008).10.1063/1.2936855CrossRefGoogle Scholar
Wang, W., Clark, R., Nakano, A., Kalia, R. K. and Vashishta, P., Appl Phys Lett 95(26), 261901 (2009).10.1063/1.3268436CrossRefGoogle Scholar
Voter, A. F. and Chen, S. P., presented at the Mater. Res. Soc. Proc, 1987 (unpublished).Google Scholar
Vashishta, P., Kalia, R. K., Nakano, A. and Rino, J. P., Journal of Applied Physics 103 (083504), 083504 (2008).CrossRefGoogle Scholar