Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T18:45:31.775Z Has data issue: false hasContentIssue false

Orientation-Dependent Dewetting of Patterned Thin Si Film on SiO2

Published online by Cambridge University Press:  01 February 2011

Erwan Dornel
Affiliation:
erwan.dornel@cea.fr, CEA-LETI, D2NT/LSCDP, 17, rue des Martyrs, Grenoble, N/A, 38054, France, +33438786532
J-C. Barbé
Affiliation:
jean-charles.barbe@cea.fr, CEA/GRE, CEA-DRT-LETI, 17, rue des Martyrs, Grenoble, N/A, 38054, France
J. Eymery
Affiliation:
joel.eymery@cea.fr, CEA, DRFMC/SP2M équipe mixte CEA-CNRS-UJF, Nanophysique et Semiconducteurs, 17, rue des Martyrs, Grenoble, N/A, 38054, France
F. de Crécy
Affiliation:
francois.decrecy@cea.fr, CEA/GRE, CEA-DRT-LETI, 17, rue des Martyrs, Grenoble, N/A, 38054, France
Get access

Abstract

The agglomeration of a Silicon On Insulator (001) film during a thermal annealing at 900°C and 950°C under hydrogenated atmosphere has been characterized by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). At this temperature, the Si faceting along {110}, {111} and {113} planes is interpreted by a surface energy anisotropy. The anisotropy of the diffusion coefficient is also revealed by the formation of Si line along the <510>, <110> and <100> directions. A mechanism of the pearling instability of the <510> lines is proposed.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wong, H., Voorhees, P. W., Miksis, M. J., and Davis, S. H., Acta Mater. 48, 1719 (2000).Google Scholar
2. Dornel, E., Barbé, J-C., Crécy, F. de, Lacolle, G. and Eymery, J., Phys. Rev. B, 73, 115427 (2006).Google Scholar
3. Ishikawa, Y., Imai, Y., Ikeda, H., and Tabe, M., Appl. Phys. Lett. 83, 3162 (2003).Google Scholar
4. Srolovitz, D.J. and Safran, S.A., J. Appl. Phys., 60(1), 255260 (1986).Google Scholar
5. Flack, F.S., Yang, B., Huang, M., Marcus, M., Simmons, J., Castellini, O.M., Eriksson, M.A., Liu, F. and Lagally, M.G., Mater. Res. Soc. Symp. Proc. Vol. 854E (2005).Google Scholar
6. Yang, B., Zhang, P., Savage, D.E., Lagally, M.G., Lu, G-H., Hueng, M., and Liu, F., Phys. Rev. B 72, 235413 (2005).Google Scholar
7. Heyraud, J.C. and Métois, J.J., Surf. Sci., 128, 334342 (1983).Google Scholar
8. Métois, J.J., Saùl, A., and Müller, P. (private communication).Google Scholar
9. Yang, Y., and Williams, E.D., J. Vac. Sci. Technol. A, 8 (3) 24812488 (1990).Google Scholar
10. Nuryadi, R. and Ishikawa, Y., J. Vac. Sci. Technol. 20, 167, (2002).Google Scholar
11. Müller, T., Heinig, K.H., Schmidt, B., Mat. Sci. and Eng. C, 19, 209213 (2002).Google Scholar
12. McCallum, M. S., Voorhees, P. W., Miksis, M. J., Davis, S. H., and Wong, H., J. Appl. Phys. 79 (10) 7604 (1996).Google Scholar
13. Kan, W. and Wong, H., J. Appl. Physics 97, 043515 (2005).Google Scholar