Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T05:14:34.829Z Has data issue: false hasContentIssue false

Organic-and Bio-Based Digital Memory Devices

Published online by Cambridge University Press:  01 February 2011

Ricky J. Tseng
Affiliation:
jhtseng@ucla.edu, UCLA, Materials Science & Engineering, Los Angeles, CA, 90095, United States
Liping Ma
Affiliation:
jhtseng@ucla.edu, UCLA, Materials Science & Engineering, Los Angeles, CA, 90095, United States
Yan Shao
Affiliation:
yanshao2004@yahoo.com, UCLA, Materials Science & Engineering, Los Angeles, CA, 90095, United States
Yang Yang
Affiliation:
yangy@ucla.edu, UCLA, Materials Science & Engineering, Los Angeles, CA, 90095, United States
Get access

Abstract

Organic memory devices are considered as a viable approach for future information processing. We demonstrate this type of memory devices evolving from multiple layers structure to solution synthesis hybrid biomolecule structure. By forming a thin organic-nanoparticle layer or virus-nanoparticle layer in the crossbar junction, electronic memory effect based on electrical bistable states with a large on/off ratio, and long retention time is achieved. Temperature dependent data retention shows the nanoparticle formation determines the charge storage activation energy. Such organic, bio-inorganic nanostructures are promising for future memory technology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Beck, A., Bednorz, J. G., Gerber, Ch., Rossel, C., and Widmer, D., Appl. Phys. Lett. 77, 139 (2000).Google Scholar
2. Lankhorst, M. H. R., Ketelaars, B. S. M. M., and Wolters, R. A. M., Nat. Mater. 4, 347 (2004).Google Scholar
3. Mitkova, M., and Kozicki, M. N., J. Non-Cryst. Solids 299-302, 1023 (2002).Google Scholar
4. Tseng, R. J., Ouyang, J., Chu, C. W., Huang, J., and Yang, Y., Appl. Phys. Lett. 88, 123506 (2006).Google Scholar
5. Cai, L., Cabassi, M. A., Yoon, H., Cabarcos, O. M., McGuiness, C. L., Flatt, A. K., Allara, D. L., Tour, J. M., and Mayer, T. S., Nano Lett. 5, 2365 (2005).Google Scholar
6. Chu, C. W., Ouyang, J., Tseng, J. H., and Yang, Y., Adv. Mater. 17, 1440 (2005).Google Scholar
7. Tseng, R. J., Huang, J., Ouyang, J., Kaner, R. B., and Yang, Y., Nano Lett. 5, 1077 (2005).Google Scholar
8. Ouyang, J., Chu, C. W., Tseng, R. J., Prakash, A., and Yang, Y., Proc. of IEEE 93, 1287 (2005).Google Scholar
9. Ma, L. P., Liu, J., and Yang, Y., Appl. Phys. Lett. 80, 2997 (2002).Google Scholar
10. Tseng, R. J., Tsai, C., Ma, L. P., Ouyang, J., Ozkan, C. S., and Yang, Y., Nat. Nanotech. 1, 72 (2006).Google Scholar
11. Wu, J., Ma, L., and Yang, Y., Phys. Rev. B 69, 115321 (2004).Google Scholar